搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强梯度复杂流场中的粒子动力学响应试验研究

陈植 易仕和 朱杨柱 何霖 全鹏程

引用本文:
Citation:

强梯度复杂流场中的粒子动力学响应试验研究

陈植, 易仕和, 朱杨柱, 何霖, 全鹏程

Experimental study on of dynamics of particles in the flow filed with intensive gradients

Chen Zhi, Yi Shi-He, Zhu Yang-Zhu, He Lin, Quan Peng-Cheng
PDF
导出引用
  • 示踪粒子在(高)超声速流场中的动力学响应是粒子成像测速等粒子示踪测量技术的关键问题之一.现有文献对粒子动力学响应的试验测量往往是通过单个斜激波响应的测量方法. 然而,当示踪粒子用于测量高速飞行器发动机内部复杂的激波串流场时,粒子将经历由多道激波导致的速度、压力、黏性等剧烈变化. 本文结合目前(高)超声速飞行器的研究热潮,重点关注示踪粒子在应用于发动机内部具有连续激波的复杂流场测量中存在的跟随性评估方面,开展了一系列的相关试验研究. 包括测量超声速风洞的喷管出口速度分布以验证测试系统的性能,在马赫4.2和3.0流场中测量了粒子对二维10°和15°单斜劈绕流中的斜激波动力响应,并测量了模拟发动机内部连续梯度的双斜劈粒子斜激波动力响应. 结合粒子动力学的理论模型,得到了各状态的粒子弛豫时间、弛豫距离、Stokes数. 基于图像方法、统计学规律分析了激波非定常抖动对测量结果的影响,并对测量结果进行了修正. 结果显示,相同斜劈角度下,马赫数越高,粒子的弛豫时间、弛豫距离就越大.但是在相同的来流马赫数下,斜劈角度越大,粒子的弛豫时间、弛豫距离反而减小. 在强梯度之后由于流场的雷诺数和黏性系数变化剧烈,粒子的跟随性降低了大约5.7%,Stokes数增加了约1%. 虽然在本文条件下Stokes数仍满足超声速流场对粒子跟随性的要求,但粒子响应的降低无疑是值得关注的,尤其是当其被应用于具有更多连续梯度的复杂流场测量中.
    The dynamic response of particles in hyper/supersonic flow is one of the key points of techniques using tracer particles, such as particle image velocimetry (PIV). In the literature, it is validated by the single oblique shock response testing. However, particles suffer intensive variation of velocity, density and viscosity, when used to trace and measure the complex flow field in the high speed vehicle engine. To test and validate the dynamics of particles in such a flow field with intensive gradient, in this paper we conduct a series experiments dealing with this issue. The study includes the measurements on the velocity field at the exit of the wind tunnel nozzle to testify the performance of PIV system, the measurements on the oblique shock response of particles in Mach 4.2 and Mach 3.0 supersonic flows over a 10° wedge and a 15° wedge respectively, and measurements on the double oblique shock response of particles in the flow field which is designed to simulate the flow field inside the vehicle engine with gradients and without the influence of expansion wave. Based on the particle dynamic models, the relaxation time, relaxation distance, Stokes numbers of different cases can be gained. And the influence of unstable shock oscillation is analyzed and revised based on image method and statistic analysis. It can be found that the relaxation time and distance increase with the Mach number, given the same wedge degree. However, with the same incoming Mach number, the relaxation time and distance drop when the wedge degree increases. Due to the intensive variation of Reynolds number and viscosity, the results show that in a certain extent particles lose their following ability by 5.7%, while its Stokes number increases by 1%. In the flow condition herein, the Stokes number still meets the requirement of supersonic flow. However the decrease of particle following ability is worth being concerned, especially when using particles in the complex flow field with more intensive gradients.
    • 基金项目: 国家重点基础研究计划(批准号:2009CB724100)、国家自然科学基金(批准号:11172326)、湖南省研究生创新项目(批准号:CX2012B002)和国防技术大学优秀研究生创新资助项目(批准号:B120103)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100), the National Natural Science Foundation of China (Grant No. 11172326), the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2012B002), and the Innovation Fund Program for Outstanding Postgraduate Students of NUDT, China (Grant No. B120103).
    [1]

    Xu J L 2012 Adv. Mech. 42 81(in Chinese)[徐惊雷 2012 力学进展 42 81]

    [2]

    Weiss A, Grzona A, Olivier H 2010 Exp. Fluids 49 355

    [3]

    Raffel M, Willert C E, Kompenhans J 1998 Introduction Particle Image Velocimetry: A Practical Guide (Berlin: Springer-Verlag) pp1-12

    [4]

    Haertig J, Smigielski P 1986 Proceedings of the Third International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Calouste Gulbenkian Foundation Lisbon, 1986 p192

    [5]

    Humphreys W M, Rallo R A, Hunter W W, Bartram S M 1993 Proceedings of the 5th International Conference of Laser Anemometry The Netherlands, 1993 p519

    [6]

    Humphreys W M, Bartram S M, Blackshire J 1993 AIAA Paper 93 0411

    [7]

    Lang N 1998 Proceedings of the 8th International Symposium on Flow Visualization, Universit'a degli Studi di Napoli Federico Ⅱ Sorrento, Italy, 1998 p205

    [8]

    Unalmis O H, Hou Y X, Bueno P C, Clemens N T, Dolling D S 2000 AIAA Paper 2000-2450

    [9]

    Haerting J, Havermann M, Rey C, George A 2002 AIAA J. 40 1056

    [10]

    Scarano F, Haertig J 2003 Proceedings of 5th International Symposium on Particle Image Velocimetry Busan, Korea, Sep. 2003

    [11]

    Melling A 1997 Meas. Sci. Technol. 8 1406

    [12]

    Howison J C, Goyne C P 2010 J. Propul. Power 26 514

    [13]

    He L 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[何霖 2012 博士学位论文 (长沙: 国防科学技术大学)]

    [14]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [15]

    He L L, Zhang R F, Ji Y Y 2012 Chin. Phys. B 21 088301

    [16]

    Tedeschi G, Gouin H, Elena M 1999 Exp. Fluids 28 288

    [17]

    Zhao Y X 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[赵玉新 2009 博士学位论文 (长沙: 国防科学技术大学)]

    [18]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3425

    [19]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [20]

    Li Y L, Li J, Dong Q F, Wang M J 2014 Chin. Phys. B 23 063301

    [21]

    Liu W, Andrey E M, Yuri S K 2014 Chin. Phys. B 23 047806

    [22]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [23]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [24]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 56 584

    [25]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [26]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219(in Chinese)[朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [27]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702(in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

    [28]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703(in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2013 物理学报 62 084703]

    [29]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918(in Chinese)[何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]

  • [1]

    Xu J L 2012 Adv. Mech. 42 81(in Chinese)[徐惊雷 2012 力学进展 42 81]

    [2]

    Weiss A, Grzona A, Olivier H 2010 Exp. Fluids 49 355

    [3]

    Raffel M, Willert C E, Kompenhans J 1998 Introduction Particle Image Velocimetry: A Practical Guide (Berlin: Springer-Verlag) pp1-12

    [4]

    Haertig J, Smigielski P 1986 Proceedings of the Third International Symposium on Applications of Laser Anemometry to Fluid Mechanics, Calouste Gulbenkian Foundation Lisbon, 1986 p192

    [5]

    Humphreys W M, Rallo R A, Hunter W W, Bartram S M 1993 Proceedings of the 5th International Conference of Laser Anemometry The Netherlands, 1993 p519

    [6]

    Humphreys W M, Bartram S M, Blackshire J 1993 AIAA Paper 93 0411

    [7]

    Lang N 1998 Proceedings of the 8th International Symposium on Flow Visualization, Universit'a degli Studi di Napoli Federico Ⅱ Sorrento, Italy, 1998 p205

    [8]

    Unalmis O H, Hou Y X, Bueno P C, Clemens N T, Dolling D S 2000 AIAA Paper 2000-2450

    [9]

    Haerting J, Havermann M, Rey C, George A 2002 AIAA J. 40 1056

    [10]

    Scarano F, Haertig J 2003 Proceedings of 5th International Symposium on Particle Image Velocimetry Busan, Korea, Sep. 2003

    [11]

    Melling A 1997 Meas. Sci. Technol. 8 1406

    [12]

    Howison J C, Goyne C P 2010 J. Propul. Power 26 514

    [13]

    He L 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[何霖 2012 博士学位论文 (长沙: 国防科学技术大学)]

    [14]

    Wang Y, Wu X 2012 Chin. Phys. B 21 050504

    [15]

    He L L, Zhang R F, Ji Y Y 2012 Chin. Phys. B 21 088301

    [16]

    Tedeschi G, Gouin H, Elena M 1999 Exp. Fluids 28 288

    [17]

    Zhao Y X 2009 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)[赵玉新 2009 博士学位论文 (长沙: 国防科学技术大学)]

    [18]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E 52 3425

    [19]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [20]

    Li Y L, Li J, Dong Q F, Wang M J 2014 Chin. Phys. B 23 063301

    [21]

    Liu W, Andrey E M, Yuri S K 2014 Chin. Phys. B 23 047806

    [22]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. China G 52 2001

    [23]

    Yi S H, Tian L F, Zhao Y X, He L, Chen Z 2010 Chin. Sci. Bull. 55 3545

    [24]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 56 584

    [25]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [26]

    Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219(in Chinese)[朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]

    [27]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702(in Chinese)[武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

    [28]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2013 Acta Phys. Sin. 62 084703(in Chinese)[全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2013 物理学报 62 084703]

    [29]

    He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918(in Chinese)[何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]

  • [1] 朱聪, 丁留贯, 周坤论, 钱天麒. II型射电暴分类及其与太阳高能粒子事件的关系. 物理学报, 2021, 70(9): 099601. doi: 10.7498/aps.70.20201800
    [2] 李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [3] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [4] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [5] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [6] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [7] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, 2015, 64(5): 054703. doi: 10.7498/aps.64.054703
    [8] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究. 物理学报, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [9] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [10] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [11] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [12] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [13] 沙莎, 陈志华, 张焕好, 姜孝海. Schardin问题的数值研究. 物理学报, 2012, 61(6): 064702. doi: 10.7498/aps.61.064702
    [14] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [15] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [16] 吴钦宽. 一类激波问题的间接匹配解. 物理学报, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [17] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [18] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [19] 吕晓阳, 孔令江, 刘慕仁. 一维元胞自动机随机交通流模型的宏观方程分析. 物理学报, 2001, 50(7): 1255-1259. doi: 10.7498/aps.50.1255
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  2841
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-05-15
  • 刊出日期:  2014-09-05

强梯度复杂流场中的粒子动力学响应试验研究

  • 1. 国防科技大学航天科学与工程学院, 长沙 410073
    基金项目: 国家重点基础研究计划(批准号:2009CB724100)、国家自然科学基金(批准号:11172326)、湖南省研究生创新项目(批准号:CX2012B002)和国防技术大学优秀研究生创新资助项目(批准号:B120103)资助的课题.

摘要: 示踪粒子在(高)超声速流场中的动力学响应是粒子成像测速等粒子示踪测量技术的关键问题之一.现有文献对粒子动力学响应的试验测量往往是通过单个斜激波响应的测量方法. 然而,当示踪粒子用于测量高速飞行器发动机内部复杂的激波串流场时,粒子将经历由多道激波导致的速度、压力、黏性等剧烈变化. 本文结合目前(高)超声速飞行器的研究热潮,重点关注示踪粒子在应用于发动机内部具有连续激波的复杂流场测量中存在的跟随性评估方面,开展了一系列的相关试验研究. 包括测量超声速风洞的喷管出口速度分布以验证测试系统的性能,在马赫4.2和3.0流场中测量了粒子对二维10°和15°单斜劈绕流中的斜激波动力响应,并测量了模拟发动机内部连续梯度的双斜劈粒子斜激波动力响应. 结合粒子动力学的理论模型,得到了各状态的粒子弛豫时间、弛豫距离、Stokes数. 基于图像方法、统计学规律分析了激波非定常抖动对测量结果的影响,并对测量结果进行了修正. 结果显示,相同斜劈角度下,马赫数越高,粒子的弛豫时间、弛豫距离就越大.但是在相同的来流马赫数下,斜劈角度越大,粒子的弛豫时间、弛豫距离反而减小. 在强梯度之后由于流场的雷诺数和黏性系数变化剧烈,粒子的跟随性降低了大约5.7%,Stokes数增加了约1%. 虽然在本文条件下Stokes数仍满足超声速流场对粒子跟随性的要求,但粒子响应的降低无疑是值得关注的,尤其是当其被应用于具有更多连续梯度的复杂流场测量中.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回