搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯噪声和弱正弦信号驱动的时间差型磁通门传感器

杨波 卜雄洙 王新征 于靖

引用本文:
Citation:

高斯噪声和弱正弦信号驱动的时间差型磁通门传感器

杨波, 卜雄洙, 王新征, 于靖

A time-difference fluxgate with Gauss noise and weak sinusoidal signal excitation

Yang Bo, Bu Xiong-Zhu, Wang Xin-Zheng, Yu Jing
PDF
导出引用
  • 提出了一种利用高斯噪声和弱正弦信号共同驱动的新型时间差型磁通门传感器. 根据软磁材料双稳态特性及其Fokker-Planck方程推导了跃迁率的表达式. 利用数值仿真的方法,研究了跃迁率和外磁场、激励磁场、噪声强度之间的关系. 通过将周期变化的跃迁率信号转换为方波信号,建立了方波高低电平时间差与外磁场之间的关系,并推导了传感器灵敏度的表达式. 研究表明,在一定的偏置磁场下,传感器灵敏度与激励磁场的幅值以及频率成反比,量程和激励磁场的幅值成正比. 对所设计±10.7 A/m量程的传感器样机进行了测试,传感器最小灵敏度为9.8696 ms/(A/m),可用于准静态微弱磁场的检测.
    A novel time-difference fluxgate sensor with weak sinusoidal and Gauss noise excitation is presented in this paper. Expression of the transition rate is derived according to the bistable peculiarity and the Fokker-Planck equation of the soft magnetic material. Relationships among transition rate, external magnetic field, amplitude of the excitation field, and noise intensity are discussed through numerical simulation. By converting the periodic transition rate signal to the square signal, the time difference between the high level and the low level of the square signal can be related with the external magnetic field. And the expression of the sensor's sensitivity is derived. Simulation results show that the sensitivity is inversely proportional to the amplitude and frequency of the excitation magnetic field, and the measuring range is proportional to the amplitude of the excitation magnetic field. Experiments have been carried out on a fluxgate prototype with a measuring range of ±10.7 A/m. The minimum sensitivity could achieve 9.8696 ms/(A/m), and the novel time-difference fluxgate can be of great interest in the detection of quasi-static extremely weak magnetic field.
    • 基金项目: 江苏省普通高校研究生科研创新计划(批准号:cxzz11_0241)和机电工程与控制国防科技重点实验室基金(批准号:9140C360203120C36134)资助的课题.
    • Funds: Project supported by the Program for Graduate Student Innovation of the Higher Education Institutions of Jiangsu Province, China (Grant No. cxzz11_0241) and the Foundation of the National Defense Science and Technology Key Laboratory of Mechanical and Electrical Engineering and Control, China (Grant No. 9140C360203120C36134).
    [1]

    Bulsara A R, Seberino C, Gammaitoni L, Karlsson M F, Lundqvist B, Robinson J W C 2003 Phys. Rev. E 67 016120

    [2]

    Andò B, Baglio S, Bulsara A R, Sacco V 2005 IEEE Sensors J. 5 895

    [3]

    Wang Y, Wu S, Zhou Z, Cheng D, Pang N, Wan Y 2013 Sensors 13 11539

    [4]

    Andò B, Baglio S, Bulsara A R, Trigona C 2009 Sensors Actuat. A: Phys. 151 145

    [5]

    Andò B, Baglio S, Malfa S L, Bulsara, A R 2011 IEEE Instrumentation and Measurement Technology Conference Hangzhou, China, May 10-12, 2011 p1

    [6]

    Li H, Wang Y G 2014 Acta Phys. Sin. 63 120506 (in Chinese) [李欢, 王友国 2014 物理学报 63 120506]

    [7]

    Zhu G Q, Ding K, Zhang Y, Zhao Y 2010 Acta Phys. Sin. 59 3001 (in Chinese) [朱光起, 丁珂, 张宇, 赵远 2010 物理学报 59 3001]

    [8]

    Yang M, Li X L, Wu D J 2012 Acta Phys. Sin. 61 160502 (in Chinese) [杨明, 李香莲, 吴大进 2012 物理学报 61 160502]

    [9]

    Lu H, Cheng D F, Wang Y Z, Zhao L X 2012 Acta Electron. Sin. 40 1701 (in Chinese) [卢浩, 程德福, 王言章, 赵兰霞 2012 电子学报 40 1701]

    [10]

    Lyons D, Mahaffy J M, Palacios A, In V, Longhini P, Kho A 2010 Phys. Lett. A 374 2709

    [11]

    Dai Z C, Du L C, Mei D C 2010 Chin. Phys. B 19 080503

    [12]

    Ando B, Baglio S, Sacco V, Bulsara A R, In V 2008 IEEE Trans. Instrum. Meas. 57 19

    [13]

    Andò B, Baglio S, Bulsara A R, Sacco V 2005 IEEE Instru. Meas. Mag. 8 64

    [14]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) pp140-144 (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社) 第140–144页]

  • [1]

    Bulsara A R, Seberino C, Gammaitoni L, Karlsson M F, Lundqvist B, Robinson J W C 2003 Phys. Rev. E 67 016120

    [2]

    Andò B, Baglio S, Bulsara A R, Sacco V 2005 IEEE Sensors J. 5 895

    [3]

    Wang Y, Wu S, Zhou Z, Cheng D, Pang N, Wan Y 2013 Sensors 13 11539

    [4]

    Andò B, Baglio S, Bulsara A R, Trigona C 2009 Sensors Actuat. A: Phys. 151 145

    [5]

    Andò B, Baglio S, Malfa S L, Bulsara, A R 2011 IEEE Instrumentation and Measurement Technology Conference Hangzhou, China, May 10-12, 2011 p1

    [6]

    Li H, Wang Y G 2014 Acta Phys. Sin. 63 120506 (in Chinese) [李欢, 王友国 2014 物理学报 63 120506]

    [7]

    Zhu G Q, Ding K, Zhang Y, Zhao Y 2010 Acta Phys. Sin. 59 3001 (in Chinese) [朱光起, 丁珂, 张宇, 赵远 2010 物理学报 59 3001]

    [8]

    Yang M, Li X L, Wu D J 2012 Acta Phys. Sin. 61 160502 (in Chinese) [杨明, 李香莲, 吴大进 2012 物理学报 61 160502]

    [9]

    Lu H, Cheng D F, Wang Y Z, Zhao L X 2012 Acta Electron. Sin. 40 1701 (in Chinese) [卢浩, 程德福, 王言章, 赵兰霞 2012 电子学报 40 1701]

    [10]

    Lyons D, Mahaffy J M, Palacios A, In V, Longhini P, Kho A 2010 Phys. Lett. A 374 2709

    [11]

    Dai Z C, Du L C, Mei D C 2010 Chin. Phys. B 19 080503

    [12]

    Ando B, Baglio S, Sacco V, Bulsara A R, In V 2008 IEEE Trans. Instrum. Meas. 57 19

    [13]

    Andò B, Baglio S, Bulsara A R, Sacco V 2005 IEEE Instru. Meas. Mag. 8 64

    [14]

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technological Education Publishing House) pp140-144 (in Chinese) [胡岗 1994 随机力与非线性系统 (上海: 上海科技教育出版社) 第140–144页]

  • [1] 李毅伟, 雷佑铭, 杨勇歌. 随机激励下Frenkel-Kontorova模型的纳米摩擦现象. 物理学报, 2021, 70(9): 090501. doi: 10.7498/aps.70.20201254
    [2] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析. 物理学报, 2016, 65(12): 120501. doi: 10.7498/aps.65.120501
    [3] 蓝春波, 秦卫阳. 带碰撞双稳态压电俘能系统的俘能特性研究. 物理学报, 2015, 64(21): 210501. doi: 10.7498/aps.64.210501
    [4] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证. 物理学报, 2015, 64(8): 080503. doi: 10.7498/aps.64.080503
    [5] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [6] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态. 物理学报, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [7] 张强, 周胜, 励强华, 王选章, 付淑芳. 一维反铁磁光子晶体光学双稳态效应研究. 物理学报, 2012, 61(15): 157501. doi: 10.7498/aps.61.157501
    [8] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振. 物理学报, 2012, 61(7): 070504. doi: 10.7498/aps.61.070504
    [9] 杨林静, 戴祖诚. 噪声相互关联时间对Logistic系统亚稳态稳定性的影响. 物理学报, 2012, 61(10): 100509. doi: 10.7498/aps.61.100509
    [10] 谢文贤, 蔡力, 岳晓乐, 雷佑铭, 徐伟. 两种群随机动力系统的信息熵和动力学研究. 物理学报, 2012, 61(17): 170509. doi: 10.7498/aps.61.170509
    [11] 杨林静. Logistic系统跃迁率的时间延迟效应. 物理学报, 2011, 60(5): 050502. doi: 10.7498/aps.60.050502
    [12] 汪茂胜, 黄万霞, 崔执凤. 二维映射神经元模型中的相干双共振. 物理学报, 2010, 59(7): 4485-4489. doi: 10.7498/aps.59.4485
    [13] 牛永迪, 马文强, 王荣. 电光双稳态系统的混沌控制与同步. 物理学报, 2009, 58(5): 2934-2938. doi: 10.7498/aps.58.2934
    [14] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态. 物理学报, 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [15] 汪茂胜. 二维映射神经元模型中频率依赖的随机共振. 物理学报, 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
    [16] 郭永峰, 徐 伟. 关联白噪声驱动的具有时间延迟的Logistic系统. 物理学报, 2008, 57(10): 6081-6085. doi: 10.7498/aps.57.6081
    [17] 胡爱花, 徐振源. 利用白噪声实现混沌系统线性广义同步的研究. 物理学报, 2007, 56(6): 3132-3136. doi: 10.7498/aps.56.3132
    [18] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [19] 陈绍英, 许海波, 王光瑞, 陈式刚. 耦合哈密顿系统中测度同步的研究. 物理学报, 2004, 53(12): 4098-4110. doi: 10.7498/aps.53.4098
    [20] 汪映海, 胡成生, 汪志诚. 吸收型双光子光学双稳态的时间行为. 物理学报, 1992, 41(10): 1598-1604. doi: 10.7498/aps.41.1598
计量
  • 文章访问数:  2927
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2014-07-18
  • 刊出日期:  2014-10-05

高斯噪声和弱正弦信号驱动的时间差型磁通门传感器

  • 1. 南京理工大学机械工程学院, 南京 210094
    基金项目: 江苏省普通高校研究生科研创新计划(批准号:cxzz11_0241)和机电工程与控制国防科技重点实验室基金(批准号:9140C360203120C36134)资助的课题.

摘要: 提出了一种利用高斯噪声和弱正弦信号共同驱动的新型时间差型磁通门传感器. 根据软磁材料双稳态特性及其Fokker-Planck方程推导了跃迁率的表达式. 利用数值仿真的方法,研究了跃迁率和外磁场、激励磁场、噪声强度之间的关系. 通过将周期变化的跃迁率信号转换为方波信号,建立了方波高低电平时间差与外磁场之间的关系,并推导了传感器灵敏度的表达式. 研究表明,在一定的偏置磁场下,传感器灵敏度与激励磁场的幅值以及频率成反比,量程和激励磁场的幅值成正比. 对所设计±10.7 A/m量程的传感器样机进行了测试,传感器最小灵敏度为9.8696 ms/(A/m),可用于准静态微弱磁场的检测.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回