搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平变化波导中的简正波耦合与能量转移

莫亚枭 朴胜春 张海刚 李丽

引用本文:
Citation:

水平变化波导中的简正波耦合与能量转移

莫亚枭, 朴胜春, 张海刚, 李丽

Mode coupling and energy transfer in a range-dependent waveguide

Mo Ya-Xiao, Piao Sheng-Chun, Zhang Hai-Gang, Li Li
PDF
导出引用
  • 针对海底地形水平变化对声场能量传播和声场干涉结构的影响,对简正波之间的耦合和能量转移进行了研究. 建立了一种二维大步长格式的耦合简正波模型和三维楔形波导耦合简正波模型,以便快速有效地分析简正波之间的耦合和能量转移. 基于耦合简正波模型,阐述了前向声场能量在水平变化波导中传播时的转移过程. 并根据射线简正波理论,解释了海底地形变化对声场能量分布的影响机理. 水平变化波导中声场的仿真计算表明,当本征值虚部发生剧烈变化时声场存在着较强的简正波耦合和能量转移,且海底地形变化将导致声场能量的水平传播方向偏转至海水深度增加的方向. 在声场能量转移和传播方向变化中,声场的能量趋于保留在波导中而不向海底泄漏. 同时,声场能量分布受到类似于压缩或稀疏的作用,从而形成椭圆状的干涉结构.
    The mode coupling and energy transfer are studied by considering the influences of variation in topography on sound energy transmission and structures of interference in a range-dependent waveguide. A larger level-stepped coupled mode model and a three-dimensional coupled mode model for the wedge bottom are obtained such that the mode coupling and energy transfer may be analyzed efficiently and rapidly. According to the coupled mode models, the transfer of energy is expounded for the forward pressure field in the waveguide with varying topography. Meanwhile, the mechanism is explained by the ray-mode theory for variation of energy distribution caused by variation of topography. Numerical simulations show that the coupling between normal modes and the energy transfer may occur remarkably when the imaginary parts of eigenvalues take on a huge modification, and the propagation direction of sound field will be changed to the increasing direction of sea depth due to variation of topography. In the energy transfer and the modification of propagation direction, the energy of sound field tends to remain in the waveguide, rather than to leak to the seafloor. Meanwhile, the energy distribution will be affected by the compression or sparseness so that interference structures such as ellipse, will be produced.
    • 基金项目: 国防科技重点实验室基金(批准号:9140C200103120C2001)和国家自然科学基金重点项目(批准号:11234002)资助的课题.
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory, China (Grant No. 9140C200103120C2001), and the National Natural Science Foundation of China (Grant No. 11234002).
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer)

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (2nd Ed) (Beijing: Science Press) p59 (in Chinese) [王德昭, 尚尔昌2013水声学(第二版) (北京: 科学出版社)第59页]

    [3]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta. Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [5]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [6]

    Abawi A T, Kuperman W A, Collins M D 1997 J. Acoust. Soc. Am. 102 233

    [7]

    Peng Z H, Li F H 2001 Sci. Cina. Ser A 31 165 (in Chinese) [彭朝晖, 李风华2001中国科学A辑 31 165]

    [8]

    Peng Z H, Zhang R H 2005 Acta Acustica. 30 97 (in Chinese) [彭朝晖, 张仁和2005声学学报 30 97]

    [9]

    Stotts S A 2008 J. Com. Acoust. 16 225

    [10]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [11]

    Luo W Y 2012 Sci. Cina-Phys. Mech. Astron. 55 572

    [12]

    Yang C M, Luo W Y 2012 Acta Acustica. 37 465 (in Chinese) [杨春梅, 骆文于2012声学学报 37 465]

    [13]

    Luo W Y, Yang C M, Qin J X, Zhang R H 2013 Chin. Phys. B 22 054301

    [14]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta. Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [15]

    Luo W Y, Yang C M, Zhang R H 2012 Chin. Phys. Lett. 29 014302

    [16]

    Qin J X, Luo W Y, Zhang R H, Yang C M 2013 Chin. Phys. Lett. 30 074301

    [17]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [18]

    Luo W Y 2011 Sci. Cina-Phys. Mech. Astron. 54 1562

    [19]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290

    [20]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [21]

    Wang N 2004 J. Ocean. Univ. China 34 821 (in Chinese) [王宁2004中国海洋大学学报 34 821]

    [22]

    McDonald B E, Collins M D, Kuperman W A, Heaney K D 1994 J. Acoust. Soc. Am. 96 2357

    [23]

    Ballard M S 2012 J. Acoust. Soc. Am. 131 2578

    [24]

    Ballard M S 2012 J. Acoust. Soc. Am. 131 1969

    [25]

    Collins M D 1993 J. Acoust. Soc. Am. 94 975

    [26]

    Lamb H 1904 Phil. Trans. R. Soc. Lond. 203 1

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer)

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (2nd Ed) (Beijing: Science Press) p59 (in Chinese) [王德昭, 尚尔昌2013水声学(第二版) (北京: 科学出版社)第59页]

    [3]

    Lin W S, Liang G L, Fu J, Zhang G P 2013 Acta. Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 物理学报 62 144301]

    [4]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19

    [5]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259

    [6]

    Abawi A T, Kuperman W A, Collins M D 1997 J. Acoust. Soc. Am. 102 233

    [7]

    Peng Z H, Li F H 2001 Sci. Cina. Ser A 31 165 (in Chinese) [彭朝晖, 李风华2001中国科学A辑 31 165]

    [8]

    Peng Z H, Zhang R H 2005 Acta Acustica. 30 97 (in Chinese) [彭朝晖, 张仁和2005声学学报 30 97]

    [9]

    Stotts S A 2008 J. Com. Acoust. 16 225

    [10]

    Evans R B 1983 J. Acoust. Soc. Am. 74 188

    [11]

    Luo W Y 2012 Sci. Cina-Phys. Mech. Astron. 55 572

    [12]

    Yang C M, Luo W Y 2012 Acta Acustica. 37 465 (in Chinese) [杨春梅, 骆文于2012声学学报 37 465]

    [13]

    Luo W Y, Yang C M, Qin J X, Zhang R H 2013 Chin. Phys. B 22 054301

    [14]

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta. Phys. Sin. 62 094302 (in Chinese) [杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302]

    [15]

    Luo W Y, Yang C M, Zhang R H 2012 Chin. Phys. Lett. 29 014302

    [16]

    Qin J X, Luo W Y, Zhang R H, Yang C M 2013 Chin. Phys. Lett. 30 074301

    [17]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [18]

    Luo W Y 2011 Sci. Cina-Phys. Mech. Astron. 54 1562

    [19]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290

    [20]

    Godin O A 1998 J. Acoust. Soc. Am. 103 159

    [21]

    Wang N 2004 J. Ocean. Univ. China 34 821 (in Chinese) [王宁2004中国海洋大学学报 34 821]

    [22]

    McDonald B E, Collins M D, Kuperman W A, Heaney K D 1994 J. Acoust. Soc. Am. 96 2357

    [23]

    Ballard M S 2012 J. Acoust. Soc. Am. 131 2578

    [24]

    Ballard M S 2012 J. Acoust. Soc. Am. 131 1969

    [25]

    Collins M D 1993 J. Acoust. Soc. Am. 94 975

    [26]

    Lamb H 1904 Phil. Trans. R. Soc. Lond. 203 1

  • [1] 范旭阳, 陈瀚超, 王鹿霞. 弱耦合近似下激子-激子湮灭动力学研究. 物理学报, 2021, 70(22): 227302. doi: 10.7498/aps.70.20211242
    [2] 续卓, 郭竞渊, 熊正烨, 唐强, 高沐. 掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移. 物理学报, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [3] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [4] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [5] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [6] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [7] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [8] 张同伟, 杨坤德. 一种水平变化波导中匹配场定位的虚拟时反实现方法. 物理学报, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [9] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [10] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [11] 王军转, 石卓琼, 娄昊楠, 章新栾, 左则文, 濮林, 马恩, 张荣, 郑有炓, 陆昉, 施毅. 掺铒Si/Al2O3多层结构中结晶形态对1.54 μm发光的影响. 物理学报, 2009, 58(6): 4243-4248. doi: 10.7498/aps.58.4243
    [12] 徐登. 有机盐掺杂聚合物微腔的受激发射特性研究(已撤稿). 物理学报, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [13] 沈 涵, 刘 杰, 陈志峰, 黄锦汪, 沈 勇, 王 惠, 计亮年. 卟啉和钌二元体的超快能量转移. 物理学报, 2008, 57(11): 7354-7359. doi: 10.7498/aps.57.7354
    [14] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [16] 宋淑芳, 赵德威, 徐 征, 徐叙瑢. 有机多层量子阱的能量转移. 物理学报, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 张 鹏, 周印华, 刘秀芬, 田文晶, 李 敏, 张 国. PVK:DBVP掺杂体系的能量转移及发光性质的研究. 物理学报, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [19] 于春雷, 戴世勋, 周 刚, 张军杰, 胡丽丽, 姜中宏. 掺铒碲酸盐玻璃中的浓度猝灭机理研究. 物理学报, 2005, 54(8): 3894-3899. doi: 10.7498/aps.54.3894
    [20] 冯志芳, 王义全, 许兴胜, 江少林, 郝伟, 程丙英, 张道中. 光子晶体中双通道之间能量的转移. 物理学报, 2004, 53(1): 62-65. doi: 10.7498/aps.53.62
计量
  • 文章访问数:  2852
  • PDF下载量:  421
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-22
  • 修回日期:  2014-07-02
  • 刊出日期:  2014-11-05

水平变化波导中的简正波耦合与能量转移

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001;
  • 2. 哈尔滨工程大学, 水声工程学院, 哈尔滨 150001
    基金项目: 国防科技重点实验室基金(批准号:9140C200103120C2001)和国家自然科学基金重点项目(批准号:11234002)资助的课题.

摘要: 针对海底地形水平变化对声场能量传播和声场干涉结构的影响,对简正波之间的耦合和能量转移进行了研究. 建立了一种二维大步长格式的耦合简正波模型和三维楔形波导耦合简正波模型,以便快速有效地分析简正波之间的耦合和能量转移. 基于耦合简正波模型,阐述了前向声场能量在水平变化波导中传播时的转移过程. 并根据射线简正波理论,解释了海底地形变化对声场能量分布的影响机理. 水平变化波导中声场的仿真计算表明,当本征值虚部发生剧烈变化时声场存在着较强的简正波耦合和能量转移,且海底地形变化将导致声场能量的水平传播方向偏转至海水深度增加的方向. 在声场能量转移和传播方向变化中,声场的能量趋于保留在波导中而不向海底泄漏. 同时,声场能量分布受到类似于压缩或稀疏的作用,从而形成椭圆状的干涉结构.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回