搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究

黄斌斌 熊传兵 张超宇 黄基锋 王光绪 汤英文 全知觉 徐龙权 张萌 王立 方文卿 刘军林 江风益

引用本文:
Citation:

硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究

黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益

Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities

Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi
PDF
导出引用
  • 本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜剥离转移到新的硅基板和紫铜基板上,并获得了垂直结构的LED芯片,对其变温变电流电致发光(EL)特性进行了研究. 结果表明:当环境温度不变时,在13 K低温状态下铜基板芯片的EL波长始终大于硅基板芯片约6 nm,在300 K 状态下随着驱动电流的加大铜基板芯片的EL波长会由大于硅基板芯片3 nm左右而逐渐变为与硅基板芯片重合;当驱动电流不变时,环境温度由13 K升高到320 K,两种基板芯片的EL波长随温度升高呈现S形变化并且波谱逐渐趋于重合;在100 K以下温度时铜基板芯片的Droop效应比硅基板芯片明显,在100 K 以上温度时硅基板芯片的Droop效应比铜基板芯片明显. 可能是由于两种芯片的基板具有不同的热膨胀系数和热导率导致了其变温变电流的EL特性不同.
    GaN-based light-emitting diode (LED) thin films grown on Si(111) substrates are successfully detached and transferred to copper and silicon submounts, and then become 40mil high power vertical structure LED chips. Electroluminescence properties of the two kinds of chips with the same expitaxial structure are investigated at different forward current densities and ambient temperatures. The obtained results are as follows. 1) at the same temperature, the EL peak wavelength of the chip with copper submount is longer than that of the chip with silicon submount. Under 13 K, the EL peak wavelength of the chip with copper submount is about 6 nm longer than that of chip with silicon submount as the driving current increases from 0.01 mA to 400 mA. While under 300 K, the difference in EL peak wavelength between the two kinds of chips at 0.01 mA is only about 3 nm; as the current increases to 400 mA, the difference will tend to zero and the spectra will coincide. 2) At the same current density, as the temperature increases from 13 K to 320 K, the EL peak wavelengths of the two kinds of chips are S-shaped, and the spectra tend to coincide. 3)When the temperature is below 100 K, the current density droop effect of the chips with copper submount is more abvious than that of chips with silicon submount, while above 100 K, the results are just inverse. Perhaps, it is due to the fact that the differences in thermal expansion coefficient and thermal conductivity between the two kinds of submounts lead to the diffrent EL properties.
    • 基金项目: 国家自然科学基金(批准号:51072076,11364034,61334001)、国家高技术研究发展计划(批准号:2011AA03A101,2012AA041002)、国家科技支撑计划(批准号:2011BAE32B01)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51072076, 11364034, 61334001), the National High Technology Research and Development Program of China (Grant Nos. 2011AA03A101, 2012AA041002), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01).
    [1]

    Hua S K, James I J E 2014 Phys. Status Solidi C 11 621

    [2]

    Koji O, Takahide O, Naoki S, Yoshio H, Masahito Y, Hiroshi A 2014 Phys. Status Solidi C 11 722

    [3]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006 Appl. Phys. Lett. 88 181113

    [4]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109

    [5]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004 Appl. Phys. Lett. 95 3916

    [6]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [7]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [8]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, H. Yang 2004 J. Cryst. Growth 260 331

    [9]

    Wael Tawfika Z, Juhui S, Jung J L, Jun S H, Sang W R, Hee S C, Bengso R, June K L 2013 Appl. Surf. Sci. 283 727

    [10]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Liu H C, Mo C L 2006 SCI. China Ser. E 36 733 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 刘和初, 莫春兰 2006 中国科学 36 733]

    [11]

    Xiao Z H, Zhang M, Xiong C B, Jiang F Y, Wang G X, Xiong Y J, Wang Y M 2010 J. Synth. Cryst. 39 895 (in Chinese) [肖宗湖, 张萌, 熊传兵, 江风益, 王光绪, 熊贻婧, 汪延明 2010 人工晶体学报 39 895]

    [12]

    Hori A, Yasunaga D, Satake A, K. Fujiwara 2001 Physica B 308–310 1193

    [13]

    Jiunn-Chyi L, Ya-Fen W, Yi-Ping W, Tzer-En N 2008 J. Cryst. Growth 310 5143

    [14]

    Wu Y F, Hsu H P, Liu T Y 2012 Solid-State Electron. 68 63

    [15]

    Lancefielda D, Crawforda A, Beaumontb B, Gibartb P, Heukenc M, M. Di Forte-Poissond 2001 Mater. Sci. Eng. B 82 241

    [16]

    Giovanni V, Davide S, Matteo M, francesco B, Michele G, Gaudenzio M, Enrico Z 2013 Appl. Phys. Lett. 114 071101

    [17]

    Wanga C H, Kea C C, Chiua C H, Lia J C, Kuoa H C, Lua T C, Wanga S C 2011 J. Cryst. Growth 315 242

    [18]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [19]

    Hader J, Moloney J V, S. W. Koch 2011 Appl. Phys. Lett. 99 181127

  • [1]

    Hua S K, James I J E 2014 Phys. Status Solidi C 11 621

    [2]

    Koji O, Takahide O, Naoki S, Yoshio H, Masahito Y, Hiroshi A 2014 Phys. Status Solidi C 11 722

    [3]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006 Appl. Phys. Lett. 88 181113

    [4]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109

    [5]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004 Appl. Phys. Lett. 95 3916

    [6]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [7]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [8]

    Wu M, Zhang B S, Chen J, Liu J P, Shen X M, Zhao D G, Zhang J C, Wang J F, Li N, Jin R Q, Zhu J J, H. Yang 2004 J. Cryst. Growth 260 331

    [9]

    Wael Tawfika Z, Juhui S, Jung J L, Jun S H, Sang W R, Hee S C, Bengso R, June K L 2013 Appl. Surf. Sci. 283 727

    [10]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Liu H C, Mo C L 2006 SCI. China Ser. E 36 733 (in Chinese) [熊传兵, 江风益, 方文卿, 王立, 刘和初, 莫春兰 2006 中国科学 36 733]

    [11]

    Xiao Z H, Zhang M, Xiong C B, Jiang F Y, Wang G X, Xiong Y J, Wang Y M 2010 J. Synth. Cryst. 39 895 (in Chinese) [肖宗湖, 张萌, 熊传兵, 江风益, 王光绪, 熊贻婧, 汪延明 2010 人工晶体学报 39 895]

    [12]

    Hori A, Yasunaga D, Satake A, K. Fujiwara 2001 Physica B 308–310 1193

    [13]

    Jiunn-Chyi L, Ya-Fen W, Yi-Ping W, Tzer-En N 2008 J. Cryst. Growth 310 5143

    [14]

    Wu Y F, Hsu H P, Liu T Y 2012 Solid-State Electron. 68 63

    [15]

    Lancefielda D, Crawforda A, Beaumontb B, Gibartb P, Heukenc M, M. Di Forte-Poissond 2001 Mater. Sci. Eng. B 82 241

    [16]

    Giovanni V, Davide S, Matteo M, francesco B, Michele G, Gaudenzio M, Enrico Z 2013 Appl. Phys. Lett. 114 071101

    [17]

    Wanga C H, Kea C C, Chiua C H, Lia J C, Kuoa H C, Lua T C, Wanga S C 2011 J. Cryst. Growth 315 242

    [18]

    Li Y L, Huang Y R, Lai Y H 2007 Appl. Phys. Lett. 91 181113

    [19]

    Hader J, Moloney J V, S. W. Koch 2011 Appl. Phys. Lett. 99 181127

  • [1] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [2] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究. 物理学报, 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [4] 王党会, 许天旱, 宋海洋. 纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究. 物理学报, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [5] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [6] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [7] 王雪松, 冀子武, 王绘凝, 徐明升, 徐现刚, 吕元杰, 冯志红. 关于InGaN/GaN多量子阱结构内量子效率的研究. 物理学报, 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [8] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [9] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [10] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [11] 王度阳, 孙慧卿, 解晓宇, 张盼君. GaN基LED量子阱内量子点发光性质的模拟分析. 物理学报, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [12] 陈峻, 范广涵, 张运炎. 渐变型量子阱垒层厚度对GaN基双波长发光二极管发光特性调控的研究. 物理学报, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [13] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [14] 张运炎, 范广涵. 不同掺杂类型的GaN间隔层和量子阱垒层对双波长LED作用的研究. 物理学报, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [15] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [16] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [17] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [18] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [19] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [20] 李培咸, 郝 跃, 范 隆, 张进城, 张金凤, 张晓菊. 基于量子微扰的AlGaN/GaN异质结波函数半解析求解. 物理学报, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
计量
  • 文章访问数:  3469
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-07
  • 修回日期:  2014-07-22
  • 刊出日期:  2014-11-05

硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究

  • 1. 南昌大学国家硅基LED工程技术研究中心, 南昌 330047
    基金项目: 国家自然科学基金(批准号:51072076,11364034,61334001)、国家高技术研究发展计划(批准号:2011AA03A101,2012AA041002)、国家科技支撑计划(批准号:2011BAE32B01)资助的课题.

摘要: 本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜剥离转移到新的硅基板和紫铜基板上,并获得了垂直结构的LED芯片,对其变温变电流电致发光(EL)特性进行了研究. 结果表明:当环境温度不变时,在13 K低温状态下铜基板芯片的EL波长始终大于硅基板芯片约6 nm,在300 K 状态下随着驱动电流的加大铜基板芯片的EL波长会由大于硅基板芯片3 nm左右而逐渐变为与硅基板芯片重合;当驱动电流不变时,环境温度由13 K升高到320 K,两种基板芯片的EL波长随温度升高呈现S形变化并且波谱逐渐趋于重合;在100 K以下温度时铜基板芯片的Droop效应比硅基板芯片明显,在100 K 以上温度时硅基板芯片的Droop效应比铜基板芯片明显. 可能是由于两种芯片的基板具有不同的热膨胀系数和热导率导致了其变温变电流的EL特性不同.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回