搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响

胡妮 刘雍 汤五丰 裴玲 方鹏飞 熊锐 石兢

引用本文:
Citation:

La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响

胡妮, 刘雍, 汤五丰, 裴玲, 方鹏飞, 熊锐, 石兢

Fe/Cr doping effects on the magnetism in charge-ordered manganite La0.4Ca0.6MnO3

Hu Ni, Liu Yong, Tang Wu-Feng, Pei Ling, Fang Peng-Fei, Xiong Rui, Shi Jing
PDF
导出引用
  • 研究了Fe和Cr掺杂对La0.4Ca0.6MnO3 中电荷有序反铁磁基态的调控作用. 磁性质的测量结果表明, 两种离子掺杂均能有效抑制原型样品中的长程电荷有序相, 但是Fe离子掺杂样品均具有反铁磁的基态, 而Cr掺杂样品中则出现了显著的铁磁性. 结合电输运测量结果显示, Cr掺杂引起的铁磁态同时具有金属性, 表明其中是电子双交换作用占主导. 对比两种掺杂离子的电子结构发现, Cr离子空的eg电子轨道促进了电子双交换作用, 而Fe掺杂则只是引入了不同的自旋交换作用, 导致自旋无序.
    We have investigated the Fe/Cr doping effects on the magnetic property of a charge-ordered antiferromagnetic manganite La0.4Ca0.6MnO3. Magnetic measurements reveal interesting doping effects. While all the Fe-doped samples still have antiferromagnetic ground state, strong ferromagnetic tendency can be seen in the Cr-doped samples. Meanwhile, Cr-doped samples show clear metallic transport behavior, indicating an inherent double exchange mechanism responsible for the ferromagnetic metallic state. We thus propose that the magnetic exchange interaction between Mn and dopants, and the d-orbital electronic structure of Cr/Fe are essential for the distinct doping effect of Fe and Cr.
    • 基金项目: 国家自然科学基金(批准号:11304091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304091).
    [1]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1

    [2]

    Shen J, Ward T Z, Yin L F 2013 Chin. Phys. B 22 017501

    [3]

    Liu Y K, Yin Y W, Li X G 2013 Chin Phys. B 22 087502

    [4]

    Zhang F H, Huang Z, Gao G Y, Chen P F, Wang L F, Tan X L, Wu W B 2010 Appl. Phys. Lett. 96 062507

    [5]

    Takubo N, Miyano K 2007 Phys. Rev. B 76 184445

    [6]

    Rini M, Tobey R, Dean N, Itatani J, Tomioka Y, Tokura Y, Schoenlein R W, Cavalleri A 2007 Nature 449 72

    [7]

    Pradhan K, Mukherjee A, Majumdar P 2007 Phys. Rev. Lett. 99 147206

    [8]

    Banerjee A, Mukherjee K, Kumar K, Chaddah P 2006 Phys. Rev. B 74 224445

    [9]

    Moritomo Y, Murakami K, Ishikawa H, Hanawa M, Nakamura A, Ohoyama K 2004 Phys. Rev. B 69 212407

    [10]

    Kim J S, Kim D C, McIntosh G C, Chu S W, Park Y W, Kim B J, Kim Y C, Maignan A, Raveau B 2002 Phys. Rev. B 66 224427

    [11]

    Markovich V, Fita I, Puzniak R, Rozenberg E, Wisniewski A, Martin C, Maignan A, Hervvieu M, Raveau B, Gorodetsky G 2002 Phys. Rev. B 65 224415

    [12]

    Markovich V, Rozenberg E, Gorodetsky G, Martin C, Maignan A, Hervieu M, Raveau B 2001 Phys. Rev. B 64 224410

    [13]

    Martin C, Maignan A, Hervieu M, Autret C, Raveau B, Khomskii D I 2001 Phys. Rev. B 63 174402

    [14]

    Hébert S, Maignan A, Martin C, Raveau B 2002 Solid State Commun. 121 229

    [15]

    Guo H Y, Liu N, Cai Z R, Zhang Y H 2006 Acta Phys. Sin. 55 865 (in Chinese) [郭焕银, 刘宁, 蔡之让, 张裕恒 2006 物理学报 55 865]

    [16]

    Lu C L, Chen X, Dong S, Wang K F, Cai H L, Liu J M 2009 Phys. Rev. B 79 245105

    [17]

    Wang K F, Wang Y, Wang L F, Dong S, Li D, Zhang Z D, Yu H, Li Q C, Liu J M 2006 Phys. Rev. B 73 134411

    [18]

    Hu N, Lu C L, Wang K F, Cheng L, Liu Y, Liu J M, Xiong R, Shi J 2011 Appl. Phys. A 103 485

    [19]

    Lu C L, Hu N, Yang M, Xia S C, Wang H W, Wang J F, Xia Z C, Liu J M 2014 Sci. Rep. 4 4902

    [20]

    Shannon R D 1976 Acta Crystallogr. Ser. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A 32 751

    [21]

    Studer F, Toulemonde O, Goedkoop J B, Barnabe A, Raveau B 1999 Jpn. J. Appl. Phys. Part I 38 377

    [22]

    Martinelli A, Ferretti M, Castellano C, Cimberle M R, Ritter C 2008 J. Phys.: Condens. Matter 20 145210

    [23]

    Ramesha K, Thangadurai V, Sutar D, Subramanyam S V, Subbanna G N, Gopalakrishnan J 2000 Mater. Res. Bull. 35 559

    [24]

    Kou Z Q, Di N L, Ma X, Li Q A, Cheng Z H 2005 Chin. Phys. 14 1653

    [25]

    Hu N, Liu Y, Cheng L, Shi J, Xiong R 2011 Acta Phys. Sin. 60 017503 (in Chinese) [胡妮, 刘雍, 程莉, 石兢, 熊锐 2011 物理学报 60 017503]

    [26]

    Wenger L E, Tsoi G M, Suryanarayanan R, Sudyoadsuk T 2008 J. Appl. Phys. 103 07F723

    [27]

    Sudyoadsuk T, Suryanarayanan R, Winotai P 2004 J. Magn. Magn. Mater. 272 E1379

    [28]

    Kirkpatrick S 1973 Rev. Mod. Phys. 45 574

    [29]

    Kang J S, Kim J H, Sekiyama A, Kasai A, Suga S, Han S W, Kim K H, Choi E J, Kimura T, Muro T, Saitoh Y, Olson C G, Shim J H, Min B I 2003 Phys. Rev. B 68 012410

    [30]

    Martin C, Maignan A, Hervieu M, Autret C, Raveau B, Khomskii D I 2001 Phys. Rev. B 63 174402

  • [1]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1

    [2]

    Shen J, Ward T Z, Yin L F 2013 Chin. Phys. B 22 017501

    [3]

    Liu Y K, Yin Y W, Li X G 2013 Chin Phys. B 22 087502

    [4]

    Zhang F H, Huang Z, Gao G Y, Chen P F, Wang L F, Tan X L, Wu W B 2010 Appl. Phys. Lett. 96 062507

    [5]

    Takubo N, Miyano K 2007 Phys. Rev. B 76 184445

    [6]

    Rini M, Tobey R, Dean N, Itatani J, Tomioka Y, Tokura Y, Schoenlein R W, Cavalleri A 2007 Nature 449 72

    [7]

    Pradhan K, Mukherjee A, Majumdar P 2007 Phys. Rev. Lett. 99 147206

    [8]

    Banerjee A, Mukherjee K, Kumar K, Chaddah P 2006 Phys. Rev. B 74 224445

    [9]

    Moritomo Y, Murakami K, Ishikawa H, Hanawa M, Nakamura A, Ohoyama K 2004 Phys. Rev. B 69 212407

    [10]

    Kim J S, Kim D C, McIntosh G C, Chu S W, Park Y W, Kim B J, Kim Y C, Maignan A, Raveau B 2002 Phys. Rev. B 66 224427

    [11]

    Markovich V, Fita I, Puzniak R, Rozenberg E, Wisniewski A, Martin C, Maignan A, Hervvieu M, Raveau B, Gorodetsky G 2002 Phys. Rev. B 65 224415

    [12]

    Markovich V, Rozenberg E, Gorodetsky G, Martin C, Maignan A, Hervieu M, Raveau B 2001 Phys. Rev. B 64 224410

    [13]

    Martin C, Maignan A, Hervieu M, Autret C, Raveau B, Khomskii D I 2001 Phys. Rev. B 63 174402

    [14]

    Hébert S, Maignan A, Martin C, Raveau B 2002 Solid State Commun. 121 229

    [15]

    Guo H Y, Liu N, Cai Z R, Zhang Y H 2006 Acta Phys. Sin. 55 865 (in Chinese) [郭焕银, 刘宁, 蔡之让, 张裕恒 2006 物理学报 55 865]

    [16]

    Lu C L, Chen X, Dong S, Wang K F, Cai H L, Liu J M 2009 Phys. Rev. B 79 245105

    [17]

    Wang K F, Wang Y, Wang L F, Dong S, Li D, Zhang Z D, Yu H, Li Q C, Liu J M 2006 Phys. Rev. B 73 134411

    [18]

    Hu N, Lu C L, Wang K F, Cheng L, Liu Y, Liu J M, Xiong R, Shi J 2011 Appl. Phys. A 103 485

    [19]

    Lu C L, Hu N, Yang M, Xia S C, Wang H W, Wang J F, Xia Z C, Liu J M 2014 Sci. Rep. 4 4902

    [20]

    Shannon R D 1976 Acta Crystallogr. Ser. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. A 32 751

    [21]

    Studer F, Toulemonde O, Goedkoop J B, Barnabe A, Raveau B 1999 Jpn. J. Appl. Phys. Part I 38 377

    [22]

    Martinelli A, Ferretti M, Castellano C, Cimberle M R, Ritter C 2008 J. Phys.: Condens. Matter 20 145210

    [23]

    Ramesha K, Thangadurai V, Sutar D, Subramanyam S V, Subbanna G N, Gopalakrishnan J 2000 Mater. Res. Bull. 35 559

    [24]

    Kou Z Q, Di N L, Ma X, Li Q A, Cheng Z H 2005 Chin. Phys. 14 1653

    [25]

    Hu N, Liu Y, Cheng L, Shi J, Xiong R 2011 Acta Phys. Sin. 60 017503 (in Chinese) [胡妮, 刘雍, 程莉, 石兢, 熊锐 2011 物理学报 60 017503]

    [26]

    Wenger L E, Tsoi G M, Suryanarayanan R, Sudyoadsuk T 2008 J. Appl. Phys. 103 07F723

    [27]

    Sudyoadsuk T, Suryanarayanan R, Winotai P 2004 J. Magn. Magn. Mater. 272 E1379

    [28]

    Kirkpatrick S 1973 Rev. Mod. Phys. 45 574

    [29]

    Kang J S, Kim J H, Sekiyama A, Kasai A, Suga S, Han S W, Kim K H, Choi E J, Kimura T, Muro T, Saitoh Y, Olson C G, Shim J H, Min B I 2003 Phys. Rev. B 68 012410

    [30]

    Martin C, Maignan A, Hervieu M, Autret C, Raveau B, Khomskii D I 2001 Phys. Rev. B 63 174402

  • [1] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变. 物理学报, 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [2] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [3] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [4] 易恩魁, 王彬, 沈韩, 沈冰. 轴子拓扑绝缘体候选材料层状\begin{document}${\bf{Eu}}_{ 1- x}{\bf{Ca}}_{ x}{\bf{In}}_{\bf2}{\bf{As}}_{\bf2}$\end{document}的物性研究. 物理学报, 2021, 70(12): 127502. doi: 10.7498/aps.70.20210042
    [5] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211584
    [6] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [9] 唐贵德, 李壮志, 马丽, 吴光恒, 胡凤霞. 典型磁性材料价电子结构研究面临的机遇与挑战. 物理学报, 2020, 69(2): 027501. doi: 10.7498/aps.69.20191655
    [10] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨. 稀土正铁氧体中THz自旋波的相干调控与强耦合研究进展. 物理学报, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [11] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [12] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展. 物理学报, 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [13] 齐伟华, 李壮志, 马丽, 唐贵德, 吴光恒, 胡凤霞. 磁性材料磁有序的分子场来源. 物理学报, 2017, 66(6): 067501. doi: 10.7498/aps.66.067501
    [14] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [15] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [16] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [17] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究. 物理学报, 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [18] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 王琛. 铁氧化物中电子隧道现象的扫描隧道显微术研究. 物理学报, 1996, 45(3): 506-511. doi: 10.7498/aps.45.506
计量
  • 文章访问数:  3207
  • PDF下载量:  337
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-27
  • 修回日期:  2014-08-07
  • 刊出日期:  2014-12-05

La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响

  • 1. 武汉大学物理科学与技术学院, 人工微结构教育部重点实验室, 武汉 430072;
  • 2. 湖北工业大学理学院, 武汉 430068
    基金项目: 国家自然科学基金(批准号:11304091)资助的课题.

摘要: 研究了Fe和Cr掺杂对La0.4Ca0.6MnO3 中电荷有序反铁磁基态的调控作用. 磁性质的测量结果表明, 两种离子掺杂均能有效抑制原型样品中的长程电荷有序相, 但是Fe离子掺杂样品均具有反铁磁的基态, 而Cr掺杂样品中则出现了显著的铁磁性. 结合电输运测量结果显示, Cr掺杂引起的铁磁态同时具有金属性, 表明其中是电子双交换作用占主导. 对比两种掺杂离子的电子结构发现, Cr离子空的eg电子轨道促进了电子双交换作用, 而Fe掺杂则只是引入了不同的自旋交换作用, 导致自旋无序.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回