搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多导体传输线理论的差模激励新型线束串扰模型研究

孙亚秀 卓庆坤 姜庆辉 李千

引用本文:
Citation:

基于多导体传输线理论的差模激励新型线束串扰模型研究

孙亚秀, 卓庆坤, 姜庆辉, 李千

New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory

Sun Ya-Xiu, Zhuo Qing-Kun, Jiang Qing-Hui, Li Qian
PDF
导出引用
  • 传统的线束串扰模型只是在系统内共模激励的基础上建立的, 没有考虑系统间差模激励下线束串扰的情况. 针对差模激励下系统独立回路间线束串扰的物理问题, 提出了一种基于多导体传输线理论的差模激励新型线束串扰的计算方法.该方法根据差模激励下线间的耦合机理, 利用传输线传播横向电磁模式得到新型三导体传输线寄生参数电路及数学矩阵模型, 通过镜像法以及诺埃曼公式推导出寄生参数的计算公式, 并在频域内得到新型线束串扰的链参数矩阵方程, 根据新型差模串扰模型始端、终端边界条件最终得到串扰电压的频域解.以差模激励下平行双线回路对其他回路受扰线的串扰为例, 通过仿真受扰线不同布置情况下的串扰电压, 得到了差模激励源的线束间串扰的物理规律, 即受扰线位于差模回路之间时所受的串扰要远大于位于回路外时所受的串扰, 并验证所提出的模型及方法可以计算不同频率差模激励引起的干扰. 利用解析的方法解决了线束串扰中差模激励下的导线串扰问题, 为实际中如大量导线的捆扎以及导线干扰的预测等电磁兼容问题提供了理论依据, 具有指导意义, 完善了多导体传输线理论在线束串扰中的应用.
    The traditional cable bundle crosstalk model is established based on an intra-system common mode source, without considering the crosstalk of cable bundles stimulated by a differential-mode source between different systems. To solve the physical problem of crosstalk between independent circuit cable bundles which is stimulated by a differential-mode source, in this article we propose a new differential-mode source cable bundle crosstalk calculation method based on the multiconductor transmission line theory. According to the mechanism of the differential-mode-stimulated transmission line coupling, using this method we obtain a new three-conductor transmission line parasitic parameter circuit model and mathematic matrix model through using the transmission line propagating transverse electro magnetic mode. We deduce the parasitic parameter calculation formula by an image method and Neumann formula, and then obtain the new cable bundle crosstalk chain parameter array equations in frequency domain. By using the top and end boundary conditions of the new differential-mode cable bundle crosstalk model, we finally work out the crosstalk voltage in frequency domain. In this article, we take the crosstalk between differential-mode parallel double culprit cables and the victim cable from other independent circuit for example. By simulating the crosstalk voltage of victim cable in different position arrangements, we obtain the crosstalk physical law between cable bundles under the differential-mode source condition, that is, the crosstalk of the victim cable located between differential-mode circuits is much larger than that situated outside the differential-mode circuit. We can also verify that this model can be used to calculate the crosstalk caused by differential-mode source at different frequencies. In this article, we analytically calculate the crosstalk problems caused by differential-mode source cable bundles for the first time, which provides theoretical basis for solving some practical electromagnetic compatibility problems such as the bundling of a large quantity of wires and the predicting of cable bundle crosstalk. Therefore it perfects the application of multiconductor transmission line model to cable bundle crosstalk problem, and has strong guiding significance.
    • 基金项目: 国家自然科学基金(批准号: 51209055)、航空科学基金(飞行器控制一体化技术重点实验室)(批准号: 201207P6001)、中国博士后科学基金(批准号: 3236310246)和中央高校基本科研业务费专项资金(批准号: HEUCF140810)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51209055), the Aeronautic Science Foundation, China (the Science and Technology on Aircraft Control Laboratory) (Grant No. 201207P6001), the China Postdoctoral Science Foundation (Grant No. 3236310246), and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCF140810).
    [1]

    Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]

    [2]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [3]

    Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144

    [4]

    Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71

    [5]

    Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1

    [6]

    Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466

    [7]

    Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119

    [8]

    Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]

    [9]

    Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]

    [10]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]

    [11]

    Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466

    [12]

    Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639

    [13]

    Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433

    [14]

    Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175

    [15]

    Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108

    [16]

    Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185

    [17]

    Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]

    [18]

    Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320

    [19]

    Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462

    [20]

    Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]

    [21]

    Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]

    [22]

    Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38

    [23]

    Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201

  • [1]

    Lu T B, Cui X 2000 Chin. J. Radio 15 269 (in Chinese) [卢铁兵,崔翔 2000 电波科学学报 15 269]

    [2]

    Ni G Y, Yan L, Yuan N C 2008 Chin. Phys. B 17 3629

    [3]

    Rudolph S M, Grbic A 2010 IEEE Trans. Antennas Propag. 58 1144

    [4]

    Elfadel I M, Deutsch A, Smith H H, Rubin R J, Kopcsay G V 2004 IEEE Trans. Adv. Packag. 27 71

    [5]

    Zhang H, Siebert K, Frei S, Wenzel T, Mickisch W 2008 IEEE International Symposium on Electromagnetic Compatibility Detroit, USA, August 18-22, 2008 p1

    [6]

    Sarto M S, Tamburrano A 2006 IEEE International Symposium on Electromagnetic Compatibility Portland, USA, August 14-18, 2006 p466

    [7]

    Agrawal A K, Price H J 1980 IEEE Trans. Electromagn. Compat. 22 119

    [8]

    Wan J R, Liu Y P, Zhou H L 2010 Acta Phys. Sin. 59 2948 (in Chinese) [万健如, 刘英培, 周海亮 2010 物理学报 59 2948]

    [9]

    Li Y Q, Fu Y Q, Zhang H, Yuan N C 2009 Acta Phys. Sin. 58 3949 (in Chinese) [李有权, 付云起, 张辉, 袁乃昌 2009 物理学报 58 3949]

    [10]

    Gao R J, Shi P F, Liu S T, Duan Y P, Tang Z A 2010 Acta Phys. Sin. 59 8566 (in Chinese) [高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安 2010 物理学报 59 8566]

    [11]

    Orlandi A, Paul C R 2000 IEEE Trans. Micro. Theory Tech. 48 466

    [12]

    Antonini G, Orlandi A, Pignari S A 2013 IEEE Trans. Electromagn. Compat. 55 639

    [13]

    Paul C R 1992 IEEE Trans. Electromagn. Compat. 34 433

    [14]

    Andrieu G, Koné L, Bocquet F, Démoulin B, Parmantier J P 2008 IEEE Trans. Electromagn. Compat. 50 175

    [15]

    Andrieu G, Reineix A, Bunlon X, Parmantier J P, Koné L, Démoulin B 2009 IEEE Trans. Electromagn. Compat. 51 108

    [16]

    Rumold J, Ter Haseborg J L 2000 IEEE International Symposium on Electromagnetic Compatibility Wsahington, USA, August 21-25, 2000 p185

    [17]

    Chen J J, Lei Z Y, Wu S X, Li P J 2012 J. Microwaves S3 17 (in Chinese) [陈晋吉, 雷振亚, 吴仕喜, 李鹏杰 2012 微波学报 S3 17]

    [18]

    Mejdoub Y, Rouijaa H, Ghammaz A 2009 IEEE International Conference on Microelectronics Marrakech, The Kingdom of Morocco, December 19-22, 2009 p320

    [19]

    Nobakht R A, Ardalan S H, Shuey K 1989 IEEE International Conference on Communication Boston, USA, June 11-14, 1989 p1462

    [20]

    Xie Y Z, Wang Z J, Wang Q S, Zhou H 2006 J. Tsinghua Univ. 46 499 (in Chinese) [谢彦召, 王赞基, 王群书, 周辉 2006 清华大学学报46 499]

    [21]

    Lian Y X, Li H Y, Wu J Q, Yang S Y 2010 Trans. China Electrotech. Soc. 25 1 (in Chinese) [廉玉欣, 李浩昱, 吴建强, 杨世彦 2010 电工技术学报 25 1]

    [22]

    Zhu D Y, Shi C S 2001 China Nationwide Conference on Electromagnetic Compatibility Guangzhou, China, November 1, 1989 p38

    [23]

    Toki H, Sato K 2009 J. Phys. Soc. Jpn. 78 4201

  • [1] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤. 物理学报, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [2] 王彦, 韩颖, 李增辉, 龚琳, 王璐瑶, 李曙光. 一种沟槽辅助气孔隔离的低串扰高密度异质多芯少模光纤*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210974
    [3] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [4] 林舒, 夏宁, 王洪广, 李永东, 刘纯亮. 同轴传输线微放电的统计理论稳态建模及敏感区域计算. 物理学报, 2018, 67(22): 227901. doi: 10.7498/aps.67.20181341
    [5] 江永红, 孙卫国, 张燚, 付佳, 樊群超. 差分收敛法对双原子分子高J值转动谱线的预言. 物理学报, 2016, 65(7): 070202. doi: 10.7498/aps.65.070202
    [6] 陈强, 王德华. 氢负离子在电介质球面附近的光剥离研究. 物理学报, 2014, 63(23): 233201. doi: 10.7498/aps.63.233201
    [7] 陈聪, 李定国, 蒋治国, 刘华波. 二次等效法求三层媒质中静态电偶极子的场分布. 物理学报, 2012, 61(24): 244101. doi: 10.7498/aps.61.244101
    [8] 寿倩, 江群, 梁炎斌, 胡巍. 强非局域空间光孤子在铅玻璃材料中的传输特性. 物理学报, 2011, 60(9): 094218. doi: 10.7498/aps.60.094218
    [9] 张利伟, 王佑贞, 赫丽, 许静平. 基于传输线的单负材料双层结构的隧穿性质. 物理学报, 2010, 59(9): 6106-6110. doi: 10.7498/aps.59.6106
    [10] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛纲. 磁绝缘传输线中心汇流区数值模拟的实现. 物理学报, 2010, 59(3): 1643-1650. doi: 10.7498/aps.59.1643
    [11] 高仁璟, 史鹏飞, 刘书田, 段玉平, 唐祯安. 左手材料微结构构型的传输线比拟模型. 物理学报, 2010, 59(12): 8566-8573. doi: 10.7498/aps.59.8566
    [12] 万健如, 刘英培, 周海亮. 基于传输线理论电力高频脉冲在电缆上的传输与反射研究. 物理学报, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
    [13] 李有权, 付云起, 张辉, 袁乃昌. 基于传输线模型的高阻表面反射相位分析. 物理学报, 2009, 58(6): 3949-3954. doi: 10.7498/aps.58.3949
    [14] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法. 物理学报, 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [15] 王金东, 吴祖恒, 张 兵, 魏正军, 廖常俊, 刘颂豪. 用于红外单光子探测的雪崩光电二极管传输线抑制电路模型的理论分析. 物理学报, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [16] 李海洋, 张冶文, 王蓬春, 李贵泉. 基于谐振结构的左右手传输线的奇异传输性质. 物理学报, 2007, 56(11): 6480-6485. doi: 10.7498/aps.56.6480
    [17] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象. 物理学报, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [18] 李泽宏, 李肇基, 张 波, 方 健. 非均匀沟道MOS辐照正空间电荷迁移率模型. 物理学报, 2004, 53(2): 561-565. doi: 10.7498/aps.53.561
    [19] 王忠纯. 介观耗散传输线的量子化. 物理学报, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  2758
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-18
  • 修回日期:  2014-09-19
  • 刊出日期:  2015-02-05

基于多导体传输线理论的差模激励新型线束串扰模型研究

  • 1. 哈尔滨工程大学信息与通信工程学院, 哈尔滨 150001
    基金项目: 国家自然科学基金(批准号: 51209055)、航空科学基金(飞行器控制一体化技术重点实验室)(批准号: 201207P6001)、中国博士后科学基金(批准号: 3236310246)和中央高校基本科研业务费专项资金(批准号: HEUCF140810)资助的课题.

摘要: 传统的线束串扰模型只是在系统内共模激励的基础上建立的, 没有考虑系统间差模激励下线束串扰的情况. 针对差模激励下系统独立回路间线束串扰的物理问题, 提出了一种基于多导体传输线理论的差模激励新型线束串扰的计算方法.该方法根据差模激励下线间的耦合机理, 利用传输线传播横向电磁模式得到新型三导体传输线寄生参数电路及数学矩阵模型, 通过镜像法以及诺埃曼公式推导出寄生参数的计算公式, 并在频域内得到新型线束串扰的链参数矩阵方程, 根据新型差模串扰模型始端、终端边界条件最终得到串扰电压的频域解.以差模激励下平行双线回路对其他回路受扰线的串扰为例, 通过仿真受扰线不同布置情况下的串扰电压, 得到了差模激励源的线束间串扰的物理规律, 即受扰线位于差模回路之间时所受的串扰要远大于位于回路外时所受的串扰, 并验证所提出的模型及方法可以计算不同频率差模激励引起的干扰. 利用解析的方法解决了线束串扰中差模激励下的导线串扰问题, 为实际中如大量导线的捆扎以及导线干扰的预测等电磁兼容问题提供了理论依据, 具有指导意义, 完善了多导体传输线理论在线束串扰中的应用.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回