搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于块稀疏贝叶斯学习的多任务压缩感知重构算法

文方青 张弓 贲德

引用本文:
Citation:

基于块稀疏贝叶斯学习的多任务压缩感知重构算法

文方青, 张弓, 贲德

A recovery algorithm for multitask compressive sensing based on block sparse Bayesian learning

Wen Fang-Qing, Zhang Gong, Ben De
PDF
导出引用
  • 本文提出一种基于块稀疏贝叶斯学习的多任务压缩感知重构算法, 利用块稀疏的单测量矢量模型求解多任务重构问题. 通过对信号统的计特性和稀疏块内的结构特性进行联合数学建模, 将稀疏重构问题转贝叶斯框架下的特征参数的迭代更新问题. 本文算法不需要信号稀疏度和噪声强度的先验信息, 是一种高效的盲重构算法. 仿真实验表明, 本文算法能有效利用信号的统计特性和结构信息, 在重构精度和收敛速率方面能够很好地折衷.
    As a widely applied model for compressive sensing, the multitask compressive sensing can improve the performance of the inversion by appropriately exploiting the interrelationships of the tasks. The existing multitask compressive sensing recovery algorithms only utilize the statistical characteristics of a sparse signal, the structural characteristics of the sparse signal have not been taken into consideration. A multitask compressive sensing recovery algorithm is proposed in this paper based on the block sparse Bayesian learning. The block sparse single measurement vector model is applied to the multi-task problem. Both statistical and block structural characteristics of the sparse signal are used to build a mathematical model, and the sparse inverse problem is linked to the parameter iteration problems in the Bayesian framework. The proposed algorithm does not require the sparseness information and noise beforehand, which turns out to be an effective blind recovery algorithm. Extensive numerical experiments show that the proposed algorithm can exploit both statistical and structural characteristics of the signal, therefore it may reach a good trade-off between the recovery accuracy and the convergence rate.
    • 基金项目: 国家自然科学基金(批准号: 61201367, 61271327, 61471191)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ14-08)、江苏省研究生培养创新工程(批准号: KYLX_0277)、中央高校基本科研业务费专项资金和江苏高校优势学科建设工程(PADA)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201367, 61271327, 61471191), the Funding for Outstanding Doctoral Dissertation in NUAA of China (Grant No. BCXJ14-08), the Funding of Innovation Program for Graduate Education, Jiangsu Province of China (Grant Nos. KYLX_0277), and the Fundamental Research Funds for the Central Universities, and Partly Funded by the Priority Academic Program Development of Higher Education Institutions of Jiangsu Province, China (PADA).
    [1]

    Donoho D L 2006 IEEE Trans Inform Theory 52 1289

    [2]

    Zhang J D, Zhu D Y Zhang G 2012 IEEE Trans. SP 60 1718

    [3]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [4]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [5]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [6]

    Zhang J C, Fu N Qiao L Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩 2014 物理学报 63 030701]

    [7]

    Ji S, Dunson D, Carin L 2009 IEEE Trans. SP 57 92

    [8]

    Qi Y, Liu D, Dunson D 2008 Proceedings of the 25th international conference on Machine learning, Helsinki, Finland, July 5-9 2008

    [9]

    Wang Y G, Yang L, Tang L 2013 EURASIP Journal on Advances in Signal Processing 2013 1

    [10]

    Li R P, Zhao Z F, Palicot J, Zhang H G 2014 IET Commun 8 1736

    [11]

    Wu Q S, Yimin D, Amin M G, Himed B 2014 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Florence, Italy May 4-9 2014

    [12]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. SP 56 2346

    [13]

    Hao C Q, Wang J, Deng B 2012 Acta Phys. Sin 61 148901 (in Chinese) [郝崇清, 王江, 邓斌 2012 物理学报 61 148901]

    [14]

    Candes E J 2008 Comptes Rendus Mathematique 346 589

    [15]

    Candes E J Tao T 2005 IEEE Trans Inform Theory 51 4203

    [16]

    Tropp J A, Gilbert A C 2007 IEEE Trans Inform Theory 53 4655

    [17]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin 62 174214 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174214]

    [18]

    Huang S X Zhao X F Sheng Z 2009 Chin. Phys. B 18 5084

    [19]

    Sheng Z 2013 Chin. Phys. B 22 029302

    [20]

    Zhang Z, Rao B D 2011 IEEE Journal of Selected Topics in Signal Processing 5 912

    [21]

    Wipf D P, Rao D B 2007 IEEE Trans. SP 55 3704

  • [1]

    Donoho D L 2006 IEEE Trans Inform Theory 52 1289

    [2]

    Zhang J D, Zhu D Y Zhang G 2012 IEEE Trans. SP 60 1718

    [3]

    Wang L Y, Li L, Yan B, Jiang C S, Wang H Y, Bao S L 2010 Chin. Phys. B 19 088106

    [4]

    Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203

    [5]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [6]

    Zhang J C, Fu N Qiao L Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩 2014 物理学报 63 030701]

    [7]

    Ji S, Dunson D, Carin L 2009 IEEE Trans. SP 57 92

    [8]

    Qi Y, Liu D, Dunson D 2008 Proceedings of the 25th international conference on Machine learning, Helsinki, Finland, July 5-9 2008

    [9]

    Wang Y G, Yang L, Tang L 2013 EURASIP Journal on Advances in Signal Processing 2013 1

    [10]

    Li R P, Zhao Z F, Palicot J, Zhang H G 2014 IET Commun 8 1736

    [11]

    Wu Q S, Yimin D, Amin M G, Himed B 2014 Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing Florence, Italy May 4-9 2014

    [12]

    Ji S H, Xue Y, Carin L 2008 IEEE Trans. SP 56 2346

    [13]

    Hao C Q, Wang J, Deng B 2012 Acta Phys. Sin 61 148901 (in Chinese) [郝崇清, 王江, 邓斌 2012 物理学报 61 148901]

    [14]

    Candes E J 2008 Comptes Rendus Mathematique 346 589

    [15]

    Candes E J Tao T 2005 IEEE Trans Inform Theory 51 4203

    [16]

    Tropp J A, Gilbert A C 2007 IEEE Trans Inform Theory 53 4655

    [17]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin 62 174214 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174214]

    [18]

    Huang S X Zhao X F Sheng Z 2009 Chin. Phys. B 18 5084

    [19]

    Sheng Z 2013 Chin. Phys. B 22 029302

    [20]

    Zhang Z, Rao B D 2011 IEEE Journal of Selected Topics in Signal Processing 5 912

    [21]

    Wipf D P, Rao D B 2007 IEEE Trans. SP 55 3704

  • [1] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [2] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [4] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响. 物理学报, 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [6] 丰卉, 孙彪, 马书根. 分块稀疏信号1-bit压缩感知重建方法. 物理学报, 2017, 66(18): 180202. doi: 10.7498/aps.66.180202
    [7] 冷雪冬, 巴斌, 逯志宇, 王大鸣. 基于回溯筛选的稀疏重构时延估计算法. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [8] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法. 物理学报, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [9] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [10] 郭苗苗, 王昱婧, 徐桂芝, Griffin Milsap, Nitish V. Thakor, Nathan Crone. 时变动态贝叶斯网络模型及其在皮层脑电网络连接中的应用. 物理学报, 2016, 65(3): 038702. doi: 10.7498/aps.65.038702
    [11] 尹诗白, 王卫星, 王一斌, 李大鹏, 邓箴. 贝叶斯迭代联合双边滤波的散焦图像快速盲复原. 物理学报, 2016, 65(23): 234202. doi: 10.7498/aps.65.234202
    [12] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [13] 马鸽, 胡跃明, 高红霞, 李致富, 郭琪伟. 基于物理总能量目标函数的稀疏重建模型. 物理学报, 2015, 64(20): 204202. doi: 10.7498/aps.64.204202
    [14] 王保宪, 赵保军, 唐林波, 王水根, 吴京辉. 基于双向稀疏表示的鲁棒目标跟踪算法. 物理学报, 2014, 63(23): 234201. doi: 10.7498/aps.63.234201
    [15] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [16] 邴璐, 王伟远, 王永良, 蒋式勤. 基于贪婪稀疏方法的心脏磁场源重构. 物理学报, 2013, 62(11): 118703. doi: 10.7498/aps.62.118703
    [17] 王娇, 周云辉, 黄玉清, 江虹. 基于贝叶斯网络的认知引擎设计与重配置. 物理学报, 2013, 62(3): 038402. doi: 10.7498/aps.62.038402
    [18] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析. 物理学报, 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [19] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [20] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
计量
  • 文章访问数:  6006
  • PDF下载量:  4782
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-05
  • 修回日期:  2014-10-29
  • 刊出日期:  2015-04-05

基于块稀疏贝叶斯学习的多任务压缩感知重构算法

  • 1. 南京航空航天大学, 电子信息工程学院, 南京 210016;
  • 2. 雷达成像与微波光子技术教育部重点实验室, 南京航空航天大学, 南京 210016;
  • 3. 南京电子技术研究所, 南京 210039
    基金项目: 国家自然科学基金(批准号: 61201367, 61271327, 61471191)、南京航空航天大学博士学位论文创新与创优基金(批准号: BCXJ14-08)、江苏省研究生培养创新工程(批准号: KYLX_0277)、中央高校基本科研业务费专项资金和江苏高校优势学科建设工程(PADA)资助的课题.

摘要: 本文提出一种基于块稀疏贝叶斯学习的多任务压缩感知重构算法, 利用块稀疏的单测量矢量模型求解多任务重构问题. 通过对信号统的计特性和稀疏块内的结构特性进行联合数学建模, 将稀疏重构问题转贝叶斯框架下的特征参数的迭代更新问题. 本文算法不需要信号稀疏度和噪声强度的先验信息, 是一种高效的盲重构算法. 仿真实验表明, 本文算法能有效利用信号的统计特性和结构信息, 在重构精度和收敛速率方面能够很好地折衷.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回