搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料吸波体的低雷达散射截面波导缝隙阵列天线

李文强 曹祥玉 高军 赵一 杨欢欢 刘涛

引用本文:
Citation:

基于超材料吸波体的低雷达散射截面波导缝隙阵列天线

李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛

Low-RCS waveguide slot array antenna based on a metamaterial absorber

Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao
PDF
导出引用
  • 提出利用超材料吸波体减缩波导缝隙阵列天线带内雷达散射截面的设计方法. 设计具有超薄(厚度仅为0.01λ, λ为吸波体中心频率对应波长)、无表面损耗层和高吸波率的超材料吸波体, 将其加载到波导缝隙天线E面方向辐射缝隙间的金属表面上, 并与辐射缝隙保持一定的间距. 该加载方式没有破坏天线的口径馈电振幅分布, 并利用超材料吸波体对电磁波的强吸收特性降低了天线阵的结构模式项散射. 仿真和实验结果表明, 加载超材料吸波体后天线阵的反射系数、增益、波瓣宽度保持不变, 在x极化和y极化条件下, 波导缝隙阵列天线的带内雷达散射截面减缩量均在6 dB 以上, 且在-25°-+25°范围内天线雷达散射截面均有明显的减缩, 鼻锥方向减缩超过10 dB. 该研究成果对阵列天线雷达散射截面减缩具有重要的借鉴意义和工程应用价值.
    A method of reducing the in-band radar cross section (RCS) of waveguide slot array antenna by utilizing a metamaterial absorber (MA) is preflented. A novel ultra-thin (the thickness is only 0.01λ, λ is the wavelength corresponding to the MA resonant frequency) MA with high absorptivity and no surface lossy layer is designed; the absorber is composed of two metallic layers separated by a lossy dielectric spacer. The top layer consists of an etched oblique cross-gap patch set in a periodic pattern and the bottom one is a solid metal. Effective impedance of MMA will match the free space impedance by adjusting the dimensions of electric resonant component and magnetic resonant component in the unit cell, and so the reflection will be minimized. Meanwhile, the MMA can obtain a resonant loss to fulfill the high absorption. By finely adjusting the geometric parameters of the structure, we obtain the MA with absorption 99.9%, and its absorbing mechanism being interprefled by analyzing surface current, surface electric field, and volume power loss density distribution, respectively. The metallic area between slots in E plane direction of waveguide slot array antenna is covered by MA, and a distance between the radiating slot and the MA is suitably arranged. Antenna radiation performance is kept in good order because this arrangement does not destroy the amplitude distribution of antenna aperture, and the high absorptivity of MA that contributes the reduction of structure mode scattering. Simulation and experimental results demonstrate that the array antenna loaded with MA gets more than 6 dB RCS reduction both in the x-and y-polarized incident conditions; and the RCS of antenna has obviously a reduction from -25° to +25°, the most reduction value exceeds 10 dB in the boresight direction, while the reflectance, gain and beam width are guaranteed. This idea has an important significance and engineering application for the RCS reduction of array antenna.
    • 基金项目: 国家自然科学基金(批准号: 60671001, 61271100, 61471389)、陕西省自然科学基础研究重点项目(批准号: 2010JZ010)、中国博士后科学基金(批准号: 2012T50878)、陕西省自然科学基础研究项目(批准号: SJ08-ZT06, 2012JM8003) 和空军工程大学信息与导航学院博士创新基金(批准号: KGD103201402)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 60671001, 61271100, 61471389), the Key Program of Natural Science Basic Research of Shaanxi Province, China (Grant No. 2010JZ010), the China Postdoctoral Science Foundation(Grant No. 2012T50878), the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003), and the Doctoral Innovation Foundation of Information and Navigation college of AFEU, China (Grant No. KGD103201402).
    [1]

    Sang J H 2013 Low-observable Technologies of Aircraft (First Edition) (Beijing: Aviation Industry Press) p1 (in Chinese) [桑建华2013飞行器隐身技术(第1版) (北京: 航空工业出版社)第1页]

    [2]

    Jiang W, Liu Y, Gong S X, Hong T 2009 IEEE Anten. and Wirefless Propag. Lett. 8 1275

    [3]

    Zhou H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propag. 60 3040

    [4]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electronics Letters 49 1312

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. and Wirefless Propag. Lett. 7 473

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tuong P V, Lam V D, Park J W, Choi E H, Nikitov S A, Lee Y P 2013 Photonics and Nanostructures-Fundamentals and Applications 11 89

    [9]

    Ghosh S, Bhattzcharyya S, Kaiprath Y, Srivastava K V 2014 Journal of Applied Physics 115 681063

    [10]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microw. Opt. Technol. Lett. 55 1606

    [11]

    Huang X J, Yang H L, Yu S Q, Wang J X, L M H 2013 Journal of Applied Physics 113 213516

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    You J B, Lee W J, Won D, Yu K 2014 Optics Express 22 8339

    [14]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [15]

    Li W C, Qiao X J, Luo Y, Qin F X, Peng H X 2014 Applied Physics A 115 229

    [16]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag. 61 2327

    [17]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [18]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]

    [19]

    Hu S M, Chen H H, Law C L, Shen Z X, Zhu L, Zhang W X, Dou W B 2007 IEEE Anten. and Wirefless Propag. Lett. 6 70

    [20]

    Yang S T, Ling H 2013 IEEE Anten. and Wirefless Propag. Lett. 12 35

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [22]

    Szabo Z, Park G H, Hedge R 2010 IEEE Transaction on Microwave Theory and Techniques 58 2646

    [23]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [24]

    He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381

    [25]

    Zhu W R, Zhao X P, Bao S, Zhang Y P 2010 Chin. Phys. Lett. 27 014204

    [26]

    Shen X P, Cui T J, Ye J X 2012 ActaPhys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

  • [1]

    Sang J H 2013 Low-observable Technologies of Aircraft (First Edition) (Beijing: Aviation Industry Press) p1 (in Chinese) [桑建华2013飞行器隐身技术(第1版) (北京: 航空工业出版社)第1页]

    [2]

    Jiang W, Liu Y, Gong S X, Hong T 2009 IEEE Anten. and Wirefless Propag. Lett. 8 1275

    [3]

    Zhou H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propag. 60 3040

    [4]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electronics Letters 49 1312

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. and Wirefless Propag. Lett. 7 473

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tuong P V, Lam V D, Park J W, Choi E H, Nikitov S A, Lee Y P 2013 Photonics and Nanostructures-Fundamentals and Applications 11 89

    [9]

    Ghosh S, Bhattzcharyya S, Kaiprath Y, Srivastava K V 2014 Journal of Applied Physics 115 681063

    [10]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microw. Opt. Technol. Lett. 55 1606

    [11]

    Huang X J, Yang H L, Yu S Q, Wang J X, L M H 2013 Journal of Applied Physics 113 213516

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    You J B, Lee W J, Won D, Yu K 2014 Optics Express 22 8339

    [14]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [15]

    Li W C, Qiao X J, Luo Y, Qin F X, Peng H X 2014 Applied Physics A 115 229

    [16]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag. 61 2327

    [17]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [18]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]

    [19]

    Hu S M, Chen H H, Law C L, Shen Z X, Zhu L, Zhang W X, Dou W B 2007 IEEE Anten. and Wirefless Propag. Lett. 6 70

    [20]

    Yang S T, Ling H 2013 IEEE Anten. and Wirefless Propag. Lett. 12 35

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [22]

    Szabo Z, Park G H, Hedge R 2010 IEEE Transaction on Microwave Theory and Techniques 58 2646

    [23]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [24]

    He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381

    [25]

    Zhu W R, Zhao X P, Bao S, Zhang Y P 2010 Chin. Phys. Lett. 27 014204

    [26]

    Shen X P, Cui T J, Ye J X 2012 ActaPhys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

  • [1] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [2] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [3] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [4] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [5] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [6] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [7] 李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉. 一种具有吸波和相位相消特性的共享孔径雷达吸波材料. 物理学报, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [8] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [9] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [10] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [11] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [12] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [15] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [16] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  4269
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-13
  • 修回日期:  2014-11-04
  • 刊出日期:  2015-05-05

基于超材料吸波体的低雷达散射截面波导缝隙阵列天线

  • 1. 空军工程大学信息与导航学院, 西安 710077
    基金项目: 国家自然科学基金(批准号: 60671001, 61271100, 61471389)、陕西省自然科学基础研究重点项目(批准号: 2010JZ010)、中国博士后科学基金(批准号: 2012T50878)、陕西省自然科学基础研究项目(批准号: SJ08-ZT06, 2012JM8003) 和空军工程大学信息与导航学院博士创新基金(批准号: KGD103201402)资助的课题.

摘要: 提出利用超材料吸波体减缩波导缝隙阵列天线带内雷达散射截面的设计方法. 设计具有超薄(厚度仅为0.01λ, λ为吸波体中心频率对应波长)、无表面损耗层和高吸波率的超材料吸波体, 将其加载到波导缝隙天线E面方向辐射缝隙间的金属表面上, 并与辐射缝隙保持一定的间距. 该加载方式没有破坏天线的口径馈电振幅分布, 并利用超材料吸波体对电磁波的强吸收特性降低了天线阵的结构模式项散射. 仿真和实验结果表明, 加载超材料吸波体后天线阵的反射系数、增益、波瓣宽度保持不变, 在x极化和y极化条件下, 波导缝隙阵列天线的带内雷达散射截面减缩量均在6 dB 以上, 且在-25°-+25°范围内天线雷达散射截面均有明显的减缩, 鼻锥方向减缩超过10 dB. 该研究成果对阵列天线雷达散射截面减缩具有重要的借鉴意义和工程应用价值.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回