搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密等离子体通道中的非共振激光直接加速

刘明伟 龚顺风 李劲 姜春蕾 张禹涛 周并举

引用本文:
Citation:

低密等离子体通道中的非共振激光直接加速

刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举

Non-resonant direct laser acceleration in underdense plasma channels

Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju
PDF
导出引用
  • 在低密等离子体通道中, 横向有质动力可以有效调制电子的横向振荡过程. 一方面, 横向有质动力可以向外推动电子, 增大电子横向振荡振幅, 减小失相率, 使电子获得能量增益; 另一方面, 横向有质动力也可以通过对失相率的非线性调制来降低失相率, 在电子横向振荡振幅很小的情况下导致激光直接加速. 横向有质动力调制的大小由等离子体密度、激光强度和束宽共同决定. 三维模型结果也证实可以通过参数放大实现激光直接加速, 弥补了准二维模型的局限性.
    Mechanisms that electrons are directly accelerated by the laser-plasma interaction in non-resonant cases are studied. First, by use of a linearly polarized Gaussian laser beam, a three-dimensional model is presented to demonstrate that the frequency and the amplitude of electron oscillations can be significantly modulated by the transverse ponderomotive force, within the confinement of an underdense plasma channel. On the one hand, the transverse ponderomotive force can felicitously make electrons to experience the large amplitude oscillations and push them to the regions at a low dephasing rate. On the other hand, when the electrons oscillate across the channel with small amplitudes, the dephasing rate also can be effectively reduced by the nonlinear modulation arising from the transverse ponderomotive force. These kinds of modulations can lead electrons to stay in phase with the laser field for a longer time and thus enhance their energy gain, which also enables the mechanism of transverse ponderomotive modulation being in direct laser acceleration. This mechanism is determined by the plasma density and the laser intensity and radius. Detailed numerical results are also given which show that the electron acceleration induced by this ponderomotive modulation quite distinguishes from the parametric instability and the resonance from a driving force. Moreover, a theoretical model for the parametric amplification, which makes up the restriction of the quasi-two-dimensional model, is provided to verify that non-resonant direct laser acceleration can come from the parametric instability in the three-dimensional case.
    • 基金项目: 国家自然科学基金(批准号: 11104068)和强场激光物理国家重点实验室开放基金资助课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104068), and the Open Fund of the State Key Laboratory of High Field Laser Physics, China (Shanghai Institute of Optics and Fine Mechanics).
    [1]

    Bulanov S, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Maksimchuk A 2008 Med. Phys. 35 1770

    [2]

    Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D, Zhou M 2007 Nature 445 741

    [3]

    Nakajima K 2008 Nature Phys. 4 92

    [4]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [5]

    Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [6]

    Lu H Y, Liu M W, Wang W T, Wang C, Liu J S, Deng A H, Xu J C, Xia C Q, Li W T, Zhang H, Lu X M, Wang C, Wang J Z, Liang X Y, Len Y X, Shen B F, Nakajima K, Li R X, Xu Z Z 2011 Appl. Phys. Lett. 99 091502

    [7]

    Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese) [张国博, 邹德滨, 马燕云, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 银燕, 余同普, 田成林, 甘龙飞, 欧阳建明, 赵娜 2013 物理学报 62 205203]

    [8]

    Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese) [张国博, 马燕云, 邹德滨, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 余同普, 田成林, 欧阳建明, 赵娜 2013 物理学报 62 125205]

    [9]

    Fuchs J, Cecchetti C A, Borghesi M, Grismayer T, d’Humières E, Antici P, Atzeni S, Mora P, Pipahl A, Romagnani L, Schiavi A, Sentoku Y, Toncian T, Audebert P, Willi O 2007 Phys. Rev. Lett. 99 015002

    [10]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [11]

    Fuchs J, Antici P, d’Humières E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V, Manclossi M, Meyroneinc S, Mora P, Schreiber J, Toncian T, Pépin H, Audebert P 2006 Nature Phys. 2 48

    [12]

    Ping Y, Kemp A J, Divol L, Key M H, Patel P K, AkliK U, Beg F N, Chawla S, Chen C D, Freeman R R, Hey D, Higginson D P, Jarrott L C, Kemp G E, Link A, McLean H S, Sawada H, Stephens R B, Turnbull D, Westover B, Wilks S C 2012 Phys. Rev. Lett. 109 145006

    [13]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

    [14]

    Huang Y S, Bi J Y, Duan X J, Lan X J, Wang N Y, Tang X Z, He Y X 2008 Appl. Phys. Lett. 92 141504

    [15]

    Arefiev A V, Breizman B N, Schollmeier M, Khudik V N 2012 Phys. Rev. Lett. 108 145004

  • [1]

    Bulanov S, Chvykov V, Kalinchenko G, Matsuoka T, Rousseau P, Reed S, Yanovsky V, Krushelnick K, Maksimchuk A 2008 Med. Phys. 35 1770

    [2]

    Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D, Zhou M 2007 Nature 445 741

    [3]

    Nakajima K 2008 Nature Phys. 4 92

    [4]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [5]

    Leemans W P, Nagler B, Gonsalves A J, Toth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [6]

    Lu H Y, Liu M W, Wang W T, Wang C, Liu J S, Deng A H, Xu J C, Xia C Q, Li W T, Zhang H, Lu X M, Wang C, Wang J Z, Liang X Y, Len Y X, Shen B F, Nakajima K, Li R X, Xu Z Z 2011 Appl. Phys. Lett. 99 091502

    [7]

    Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese) [张国博, 邹德滨, 马燕云, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 银燕, 余同普, 田成林, 甘龙飞, 欧阳建明, 赵娜 2013 物理学报 62 205203]

    [8]

    Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M, Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese) [张国博, 马燕云, 邹德滨, 卓红斌, 邵福球, 杨晓虎, 葛哲屹, 余同普, 田成林, 欧阳建明, 赵娜 2013 物理学报 62 125205]

    [9]

    Fuchs J, Cecchetti C A, Borghesi M, Grismayer T, d’Humières E, Antici P, Atzeni S, Mora P, Pipahl A, Romagnani L, Schiavi A, Sentoku Y, Toncian T, Audebert P, Willi O 2007 Phys. Rev. Lett. 99 015002

    [10]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [11]

    Fuchs J, Antici P, d’Humières E, Lefebvre E, Borghesi M, Brambrink E, Cecchetti C A, Kaluza M, Malka V, Manclossi M, Meyroneinc S, Mora P, Schreiber J, Toncian T, Pépin H, Audebert P 2006 Nature Phys. 2 48

    [12]

    Ping Y, Kemp A J, Divol L, Key M H, Patel P K, AkliK U, Beg F N, Chawla S, Chen C D, Freeman R R, Hey D, Higginson D P, Jarrott L C, Kemp G E, Link A, McLean H S, Sawada H, Stephens R B, Turnbull D, Westover B, Wilks S C 2012 Phys. Rev. Lett. 109 145006

    [13]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

    [14]

    Huang Y S, Bi J Y, Duan X J, Lan X J, Wang N Y, Tang X Z, He Y X 2008 Appl. Phys. Lett. 92 141504

    [15]

    Arefiev A V, Breizman B N, Schollmeier M, Khudik V N 2012 Phys. Rev. Lett. 108 145004

  • [1] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制. 物理学报, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [2] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [3] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [4] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [5] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究. 物理学报, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [6] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [7] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [8] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [9] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究. 物理学报, 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [12] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [13] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [14] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [15] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [16] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [18] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  2796
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-11
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-07-05

低密等离子体通道中的非共振激光直接加速

  • 1. 湖南科技大学物理与电子科学学院, 湘潭 411201
    基金项目: 国家自然科学基金(批准号: 11104068)和强场激光物理国家重点实验室开放基金资助课题.

摘要: 在低密等离子体通道中, 横向有质动力可以有效调制电子的横向振荡过程. 一方面, 横向有质动力可以向外推动电子, 增大电子横向振荡振幅, 减小失相率, 使电子获得能量增益; 另一方面, 横向有质动力也可以通过对失相率的非线性调制来降低失相率, 在电子横向振荡振幅很小的情况下导致激光直接加速. 横向有质动力调制的大小由等离子体密度、激光强度和束宽共同决定. 三维模型结果也证实可以通过参数放大实现激光直接加速, 弥补了准二维模型的局限性.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回