搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多约束纳米结构的声子热导率模型研究

华钰超 曹炳阳

引用本文:
Citation:

多约束纳米结构的声子热导率模型研究

华钰超, 曹炳阳

A model for phonon thermal conductivity of multi-constrained nanostructures

Hua Yu-Chao, Cao Bing-Yang
PDF
导出引用
  • 纳米技术的快速发展使得对微纳尺度导热机理的深入研究变得至关重要. 理论和实验都表明, 在纳米尺度下声子热导率将表现出尺寸效应. 基于声子玻尔兹曼方程和修正声子平均自由程的方法得到了多约束纳米结构的声子热导率模型, 可以描述多个几何约束共同作用下热导率的尺寸效应. 不同几何约束对声子输运的限制作用可以分开计算, 总体影响则通过马西森定则进行耦合. 对于热流方向的约束, 采用扩散近似的方法求解声子玻尔兹曼方程; 对于侧面边界约束, 采用修正平均自由程的方法计算边界散射对热导率的影响. 得到的模型能够预测纳米薄膜(法向和面向)及有限长度方形纳米线的热导率随相应特征尺寸的变化. 与蒙特卡罗模拟及硅纳米结构热导率实验值的对比验证了模型的正确性.
    The rapid development of nanotechnology makes it possible to further understand nanoscale heat conduction. Theoretical analysis and experimental measurement have demonstrated the size-dependence of thermal conductivity on a nanoscale. As dielectric material (such as silicon), phonons are the predominant carriers of heat transport. Phonon ballistic transport and boundary scattering lead to the significant reduction of thermal conductivity. Various models, in which only one geometrical constraint of phonon transport is considered, have been proposed. In engineering situations the phonon transport can be influenced by multiple geometrical constraints, especially for material with long intrinsic phonon mean free path. However, at present a phonon thermal conductivity model in which the multiple geometrical constraints of phonon transport are taken into account, is still lacking. In the present paper, a multi-constrained phonon thermal conductivity model is obtained by using the phonon Boltzmann transport equation and modifying the phonon mean free path. The geometrical constraints are dealt with separately, and the effects of these constraints on thermal conductivity are then combined by the Matthiessen's rules. Different boundary conditions can lead to different influences on the phonon transport, so different methods should be used for different boundary constraints. The differential approximation method is utilized for the constraint in the direction of heat flux, while phonon scatterings on side surfaces are characterized by modifying the phonon mean free path. The model which characterizes various nanostructures including nanofilms(in-plane and cross-plane) and finite length rectangular nanowires, can well agree with the Monte Carlo simulations of different Knudsen numbers. The model with the Knudsen number Knx equal to 0 can well predict the experimental data for the in-plane thermal conductivity of nanofilm. When the Knudsen numbers Kny and Knz vanish, the model corresponds to the cross-plane thermal conductivity of nanofilm. Moreover, with Knx=0 and Kny=Knz, the model corresponds to the square nanowires of infinite length, and the similar slopes between the model and the experimental data of nanowires can be achieved.
    • 基金项目: 国家自然科学基金(批准号: 51322603, 51356001, 51136001, 51321002)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51322603, 51356001, 51136001, 51321002) and the Program for New Century Excellent Talents in University, Tsinghua University Initiative Scientific Research Program, China.
    [1]

    Toberer E S, Baranowski L L, Dames C 2012 Annu. Rev. Mater. Res. 42 179

    [2]

    Ju Y, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [3]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [4]

    Asheghi M, Leung Y, Wong S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [5]

    Ju Y 2005 Appl. Phys. Lett. 87 153106

    [6]

    Hopkins P E, Reinke C M, Su M F, Olsson III R H, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I 2010 Nano Lett. 11 107

    [7]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [8]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A, Heath J R 2008 Nature 451 168

    [9]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (UK: Clarendon Press Oxford) pp451-482

    [10]

    Flik M, Tien C 1990 J. Heat Trans. 112 872

    [11]

    Majumdar A 1993 J. Heat Trans. 115 7

    [12]

    Alvarez F, Jou D 2007 Appl. Phys. Lett. 90 083109

    [13]

    Alvarez F, Jou D 2008 J. Appl. Phys. 103 094321

    [14]

    Lü X, Shen W, Chu J 2002 J. Appl. Phys. 91 1542

    [15]

    Dong Y, Cao B Y, Guo Z Y 2015 Physica E 66 1

    [16]

    McGaughey A J, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904

    [17]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Trans. 78 755

    [18]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) pp154-264

    [19]

    Siegel R, Howell J R 1990 Thermal Radiation Transfer (Beijing: Science Press) pp385-397 (in Chinese) [R.西格尔, J. R.豪厄尔 著, 曹玉璋, 黄素逸 等 译 1990 热辐射传热 (北京: 科学出版社)第385-397页]

    [20]

    Peraud J P M, Hadjiconstantinou N G 2012 Appl. Phys. Lett. 101 153114

    [21]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [22]

    Pop E, Sinha S, Goodson K E 2006 Proceedings of the IEEE 94 1587

    [23]

    Chen G 1998 Phys. Rev. B 57 14958

  • [1]

    Toberer E S, Baranowski L L, Dames C 2012 Annu. Rev. Mater. Res. 42 179

    [2]

    Ju Y, Goodson K E 1999 Appl. Phys. Lett. 74 3005

    [3]

    Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819

    [4]

    Asheghi M, Leung Y, Wong S, Goodson K E 1997 Appl. Phys. Lett. 71 1798

    [5]

    Ju Y 2005 Appl. Phys. Lett. 87 153106

    [6]

    Hopkins P E, Reinke C M, Su M F, Olsson III R H, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I 2010 Nano Lett. 11 107

    [7]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934

    [8]

    Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A, Heath J R 2008 Nature 451 168

    [9]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (UK: Clarendon Press Oxford) pp451-482

    [10]

    Flik M, Tien C 1990 J. Heat Trans. 112 872

    [11]

    Majumdar A 1993 J. Heat Trans. 115 7

    [12]

    Alvarez F, Jou D 2007 Appl. Phys. Lett. 90 083109

    [13]

    Alvarez F, Jou D 2008 J. Appl. Phys. 103 094321

    [14]

    Lü X, Shen W, Chu J 2002 J. Appl. Phys. 91 1542

    [15]

    Dong Y, Cao B Y, Guo Z Y 2015 Physica E 66 1

    [16]

    McGaughey A J, Landry E S, Sellan D P, Amon C H 2011 Appl. Phys. Lett. 99 131904

    [17]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Trans. 78 755

    [18]

    Kaviany M 2008 Heat Transfer Physics (Cambridge: Cambridge University Press) pp154-264

    [19]

    Siegel R, Howell J R 1990 Thermal Radiation Transfer (Beijing: Science Press) pp385-397 (in Chinese) [R.西格尔, J. R.豪厄尔 著, 曹玉璋, 黄素逸 等 译 1990 热辐射传热 (北京: 科学出版社)第385-397页]

    [20]

    Peraud J P M, Hadjiconstantinou N G 2012 Appl. Phys. Lett. 101 153114

    [21]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

    [22]

    Pop E, Sinha S, Goodson K E 2006 Proceedings of the IEEE 94 1587

    [23]

    Chen G 1998 Phys. Rev. B 57 14958

  • [1] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [2] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [3] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] 阳喜元, 全军. 金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究. 物理学报, 2015, 64(11): 116201. doi: 10.7498/aps.64.116201
    [6] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [7] 李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦. 低聚壳聚糖几何结构和物理化学属性的理论研究. 物理学报, 2014, 63(7): 076102. doi: 10.7498/aps.63.076102
    [8] 谷卓, 班士良. 纤锌矿结构ZnO/MgxZn1-xO量子阱中带间光吸收的尺寸效应和三元混晶效应. 物理学报, 2014, 63(10): 107301. doi: 10.7498/aps.63.107301
    [9] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应. 物理学报, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [10] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [12] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [13] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应. 物理学报, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [14] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [16] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质. 物理学报, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [17] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [18] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型. 物理学报, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [20] 都有为, 陈鹏, 朱建民, 邢定钰. 纳米结构ZnxFe3-xO4-α-Fe2O3多晶材料中的巨隧道磁电阻效应. 物理学报, 2001, 50(11): 2275-2277. doi: 10.7498/aps.50.2275
计量
  • 文章访问数:  2868
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-22
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-05

多约束纳米结构的声子热导率模型研究

  • 1. 清华大学工程力学系, 热科学与动力工程教育部重点实验室, 北京 100084
    基金项目: 国家自然科学基金(批准号: 51322603, 51356001, 51136001, 51321002)、新世纪优秀人才支持计划和清华大学自主科研计划资助的课题.

摘要: 纳米技术的快速发展使得对微纳尺度导热机理的深入研究变得至关重要. 理论和实验都表明, 在纳米尺度下声子热导率将表现出尺寸效应. 基于声子玻尔兹曼方程和修正声子平均自由程的方法得到了多约束纳米结构的声子热导率模型, 可以描述多个几何约束共同作用下热导率的尺寸效应. 不同几何约束对声子输运的限制作用可以分开计算, 总体影响则通过马西森定则进行耦合. 对于热流方向的约束, 采用扩散近似的方法求解声子玻尔兹曼方程; 对于侧面边界约束, 采用修正平均自由程的方法计算边界散射对热导率的影响. 得到的模型能够预测纳米薄膜(法向和面向)及有限长度方形纳米线的热导率随相应特征尺寸的变化. 与蒙特卡罗模拟及硅纳米结构热导率实验值的对比验证了模型的正确性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回