搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水声正交频分多址上行通信稀疏信道估计与导频优化

马璐 刘凇佐 乔钢

引用本文:
Citation:

水声正交频分多址上行通信稀疏信道估计与导频优化

马璐, 刘凇佐, 乔钢

Sparse channel estimation and pilot optimization for underwater acoustic orthogonal frequency division multiple access uplink communications

Ma Lu, Liu Song-Zuo, Qiao Gang
PDF
导出引用
  • 针对水声正交频分多址(OFDMA)上行通信中用户导频数量少、分布不均匀, 导致传统内插信道估计方法产生误码平层的问题, 提出一种稀疏信道估计与导频优化方法. 基于压缩感知(CS)理论估计稀疏信道冲激响应, 并依据CS理论中测量矩阵互相关最小化原理, 提出基于随机搜索的导频图案和导频功率联合优化算法. 仿真结果表明, 所提方法在不同多径扩展信道下的性能均优于基于线性内插的最小二乘估计、未经导频优化的CS信道估计以及单纯基于导频图案优化的CS信道估计. 水池实验分别验证了交织式和广义式子载波分配的水声OFDMA上行通信性能, 在接收信噪比高于10 dB时利用所提方法实现了两用户接入的可靠通信.
    Considering that the conventional channel interpolation method with sparse and irregular spaced pilots will lead to an error floor in underwater acoustic (UWA) orthogonal frequency division multiple access (OFDMA) uplink communications, a method for sparse channel estimation and pilot optimization is proposed in this paper. A compressed sensing (CS) algorithm is utilized for sparse channel impulse response estimation, which performs well in sparse and irregular spaced pilots and significantly decreases the channel estimation error. Besides, the pilots’ pattern and power joint optimization algorithm based on the random search technique is proposed for the minimum mutual coherence criterion in CS theory, which further improves the performance of CS estimation algorithm. During each iteration step, we randomly pick a pilots’ pattern from the subcarrier index set and a pilots’ power subset from the available power set. Then we perform this step iteratively within a certain searching time. Finally, the local optimal solution of the objective function for minimizing mutual coherence is considered as the feasible pilots’ pattern and power. Simulation results show that the convergence performance of the pilots’ pattern and power joint optimization algorithm is much better than that of the pilots’ pattern optimization algorithm. Furthermore, the channel estimation error of the proposed method is much lower than that of conventional least-squares channel estimator based on linear interpolation, CS channel estimator without pilot optimization, and CS channel estimator merely with pilots’ pattern optimization in channels of different multipath delay spreads. Finally, performance of the proposed method is demonstrated in the UWA uplink OFDMA systems with interleaved and generalized carrier assignment schemes respectively in the two-user case in a pool experiment. Experimental results show that the proposed method decreases dramatically the bit error rate in both carrier assignment schemes, and simultaneous reception for two users is achieved when signal noise ratio is larger than 10 dB.
    • 基金项目: 国家自然科学基金(批准号: 11274079, 61431004, 61401114)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274079, 61431004, 61401114).
    [1]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [2]

    Yin J W, Yang S, Du P Y, Yu Y 2012 Acta Phys. Sin. 61 064302 (in Chinese) [殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳 2012 物理学报 61 064302]

    [3]

    Khalil I M, Gadallah Y, Hayajneh M, Khreishah A 2012 Sensors 12 8782

    [4]

    Jabba D, Labrador M 2009 IEEE Conference Oceans 2009 Bremen, Germany, May 11-14 2009, p1

    [5]

    Morelli M, Kuo C, Pun M-O 2007 Proceedings of the IEEE 95 1394

    [6]

    Ma Y, Tafazolli R 2007 IEEE Trans. Signal Process. 55 1568

    [7]

    Fertl P, Matz G 2007 IEEE International Conference on Acoustics, Speech and Signal Processing Honolulu, Hawaii, USA, April 15-20 2007, p297

    [8]

    Raghavendra M R, Lior E, Bhashyam S, Giridhar K 2007 IEEE Trans. Signal Process. 55 5370

    [9]

    Huang W C, Pan C H, Li C P, Li H J 2010 IEEE Trans. Broadcasting 56 58

    [10]

    Berger C R, Zhou S L, Preisig J C, Willett P 2010 IEEE Trans. Signal Process. 58 1708

    [11]

    Tu K, Duman TM, Stojanovic M, Proakis J G 2013 IEEE J. Ocean Eng. 38 333

    [12]

    Huang Y, Wan L, Zhou S L, Wang Z H, Huang J Z 2014 Phys. Commun. 13 156

    [13]

    Tu K, Duman T M, Stojanovic M, Proakis, J G 2011 49th Annual Allerton Conference on Communication, Control, and Computing University of Illinois Monticello, IL, USA, September 28-30, 2011, p633

    [14]

    Candes E J, Wakin M B 2008 Signal Process. Mag. 25 21

    [15]

    Kunis S, Rauhut H 2008 Foundations of Comput. Math. 8 737

    [16]

    Candes E J 2008 Comptes Rendus Math. 346 589

    [17]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4655

    [18]

    Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 300

    [19]

    Liu S Z, Qiao G, Yin Y L 2013 Acta Phys. Sin. 62 144303 (in Chinese) [刘凇佐, 乔钢, 尹艳玲 2013 物理学报 62 144303]

    [20]

    Donoho D L, Elad M, Temlyakov V N 2006 IEEE Trans. Inf. Theory 52 6

    [21]

    He X Y, Song R F, Zhou K Q 2012 J. Commun. 32 85 (in Chinese) [何雪云, 宋荣方, 周克琴 2012 通信学报 32 85]

    [22]

    Qi C H, Wu L N, Zhu P C 2014 J. Electronic & Information Technology 36 763 (in Chinese) [戚晨皓, 吴乐南, 朱鹏程 2014 电子与信息学报 36 763]

  • [1]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [2]

    Yin J W, Yang S, Du P Y, Yu Y 2012 Acta Phys. Sin. 61 064302 (in Chinese) [殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳 2012 物理学报 61 064302]

    [3]

    Khalil I M, Gadallah Y, Hayajneh M, Khreishah A 2012 Sensors 12 8782

    [4]

    Jabba D, Labrador M 2009 IEEE Conference Oceans 2009 Bremen, Germany, May 11-14 2009, p1

    [5]

    Morelli M, Kuo C, Pun M-O 2007 Proceedings of the IEEE 95 1394

    [6]

    Ma Y, Tafazolli R 2007 IEEE Trans. Signal Process. 55 1568

    [7]

    Fertl P, Matz G 2007 IEEE International Conference on Acoustics, Speech and Signal Processing Honolulu, Hawaii, USA, April 15-20 2007, p297

    [8]

    Raghavendra M R, Lior E, Bhashyam S, Giridhar K 2007 IEEE Trans. Signal Process. 55 5370

    [9]

    Huang W C, Pan C H, Li C P, Li H J 2010 IEEE Trans. Broadcasting 56 58

    [10]

    Berger C R, Zhou S L, Preisig J C, Willett P 2010 IEEE Trans. Signal Process. 58 1708

    [11]

    Tu K, Duman TM, Stojanovic M, Proakis J G 2013 IEEE J. Ocean Eng. 38 333

    [12]

    Huang Y, Wan L, Zhou S L, Wang Z H, Huang J Z 2014 Phys. Commun. 13 156

    [13]

    Tu K, Duman T M, Stojanovic M, Proakis, J G 2011 49th Annual Allerton Conference on Communication, Control, and Computing University of Illinois Monticello, IL, USA, September 28-30, 2011, p633

    [14]

    Candes E J, Wakin M B 2008 Signal Process. Mag. 25 21

    [15]

    Kunis S, Rauhut H 2008 Foundations of Comput. Math. 8 737

    [16]

    Candes E J 2008 Comptes Rendus Math. 346 589

    [17]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4655

    [18]

    Liu S Z, Qiao G, Ismail A 2013 J. Acoust. Soc. Am. 133 300

    [19]

    Liu S Z, Qiao G, Yin Y L 2013 Acta Phys. Sin. 62 144303 (in Chinese) [刘凇佐, 乔钢, 尹艳玲 2013 物理学报 62 144303]

    [20]

    Donoho D L, Elad M, Temlyakov V N 2006 IEEE Trans. Inf. Theory 52 6

    [21]

    He X Y, Song R F, Zhou K Q 2012 J. Commun. 32 85 (in Chinese) [何雪云, 宋荣方, 周克琴 2012 通信学报 32 85]

    [22]

    Qi C H, Wu L N, Zhu P C 2014 J. Electronic & Information Technology 36 763 (in Chinese) [戚晨皓, 吴乐南, 朱鹏程 2014 电子与信息学报 36 763]

  • [1] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211504
    [3] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [4] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [5] 殷敬伟, 杜鹏宇, 张晓, 朱广平. 基于单矢量差分能量检测器的扩频水声通信. 物理学报, 2016, 65(4): 044302. doi: 10.7498/aps.65.044302
    [6] 杜鹏宇, 殷敬伟, 周焕玲, 郭龙祥. 基于时反镜能量检测法的循环移位扩频水声通信. 物理学报, 2016, 65(1): 014302. doi: 10.7498/aps.65.014302
    [7] 林和昀, 袁超伟, 杜建和. 一种多用户上行放大转发中继系统中快速收敛的信道估计方法. 物理学报, 2016, 65(21): 210201. doi: 10.7498/aps.65.210201
    [8] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测. 物理学报, 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [9] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [10] 郑羽, 赵宣, 李静, 付孝洪, 王金海, 李红志, 刘宁. 深海走航抛弃式测量仪器时变信道对传输性能的影响. 物理学报, 2014, 63(4): 040507. doi: 10.7498/aps.63.040507
    [11] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计. 物理学报, 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [12] 何成兵, 黄建国, 孟庆微, 张群飞, 史文涛. 基于扩频码的单载波迭代频域均衡水声通信. 物理学报, 2013, 62(23): 234301. doi: 10.7498/aps.62.234301
    [13] 刘凇佐, 乔钢, 尹艳玲. 一种利用海豚叫声的仿生水声通信方法. 物理学报, 2013, 62(14): 144303. doi: 10.7498/aps.62.144303
    [14] 王巍, 乔钢, 邢思宇. 无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法. 物理学报, 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [15] 于洋, 周锋, 乔钢. 正交码元移位键控扩频水声通信. 物理学报, 2013, 62(6): 064302. doi: 10.7498/aps.62.064302
    [16] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [17] 于洋, 周锋, 乔钢. M元码元移位键控扩频水声通信. 物理学报, 2012, 61(23): 234301. doi: 10.7498/aps.61.234301
    [18] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [19] 何成兵, 黄建国, 韩晶, 张群飞. 循环移位扩频水声通信. 物理学报, 2009, 58(12): 8379-8385. doi: 10.7498/aps.58.8379
    [20] 殷敬伟, 惠俊英, 王逸林, 惠 娟. M元混沌扩频多通道Pattern时延差编码水声通信. 物理学报, 2007, 56(10): 5915-5921. doi: 10.7498/aps.56.5915
计量
  • 文章访问数:  3831
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-08-05

水声正交频分多址上行通信稀疏信道估计与导频优化

  • 1. 哈尔滨工程大学 水声技术重点实验室, 哈尔滨 150001;
  • 2. 哈尔滨工程大学 水声工程学院, 哈尔滨 150001
    基金项目: 国家自然科学基金(批准号: 11274079, 61431004, 61401114)资助的课题.

摘要: 针对水声正交频分多址(OFDMA)上行通信中用户导频数量少、分布不均匀, 导致传统内插信道估计方法产生误码平层的问题, 提出一种稀疏信道估计与导频优化方法. 基于压缩感知(CS)理论估计稀疏信道冲激响应, 并依据CS理论中测量矩阵互相关最小化原理, 提出基于随机搜索的导频图案和导频功率联合优化算法. 仿真结果表明, 所提方法在不同多径扩展信道下的性能均优于基于线性内插的最小二乘估计、未经导频优化的CS信道估计以及单纯基于导频图案优化的CS信道估计. 水池实验分别验证了交织式和广义式子载波分配的水声OFDMA上行通信性能, 在接收信噪比高于10 dB时利用所提方法实现了两用户接入的可靠通信.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回