搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下'-Fe4N晶态合金的声子稳定性与磁性

成泰民 孙腾 张龙燕 张新欣 朱林 李林

引用本文:
Citation:

高压下'-Fe4N晶态合金的声子稳定性与磁性

成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林

Phonon stability and magnetism of -Fe4N crystalline state alloys at high pressure

Cheng Tai-Min, Sun Teng, Zhang Long-Yan, Zhang Xin-Xin, Zhu Lin, Li Lin
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理研究了高压下有序晶态-Fe4N合金的晶格动力学稳定性与磁性. 对比没有考虑磁性的-Fe4N的声子谱, 得出压力小于1 GPa时, 自发磁化诱导了铁磁相-Fe4N基态晶格动力学稳定. 压力在1.03-31.5 GPa时, 线上的点(0.37, 0.37, 0)、对称点X和M 上相继出现了声子谱软化现象. 压力在31.5-60.8 GPa时, 压致效应与自发磁化对诸原子的作用达到了稳定平衡, 表现出了声子谱稳定. 压力大于61.3 GPa时, 随着压力的增大压力诱导体系动力学不稳定性越强. 通过软模相变理论对于-Fe4N, 在10 GPa下的声学支声子的M点处软化现象的处理, 发现了动力学稳定的高压新相P2/m-Fe4N. 压力小于1 GPa时高压新相P2/m-Fe4N 是热力学稳定的相, 且磁矩与-Fe4N的磁矩几乎相同. 2.9-19 GPa时, P2/m相的焓比相的焓小, 基态结构更稳定. 大于20 GPa时, 两相磁矩几乎相同.
    By using projection augmented plane wave method (PAW) and based on the density functional theory, the stability of lattice dynamics and the magnetism of ordered crystalline alloy -Fe4N are studied at high external pressures. In comparison with the phonon spectrum of -Fe4N without considering the spin-polarization, it is found that the ground-state lattice dynamics stability of the ferromagnetic phase -Fe4N is induced by the spontaneous magnetization at pressures below 1 GPa. The phonon spectra at point (0.37, 0.37, 0) in line , points X and M become softening at pressures between 1.03 and 31.5 GPa. The pressure-induced effect and the spontaneous magnetization effect on the atoms reach a stable equilibrium state at the pressures between 31.5 and 60.8 GPa, which result in the phonon spectrum stability. As the pressure exceeds 61.3 GPa, the system becomes more instable dynamically with the increase of the external pressure. The softening at point M of the acoustic phonon is treated by the soft-mode phase theory at 10 GPa, and a new dynamic stability high-pressure phase with a space group of P2/m is found. This new phase is thermodynamically stable and possesses the same magnetic moments as that of -Fe4N at pressures below 1 GPa. The enthalpy value of the phase P2/m is less than that of phase at the pressures between 2.9 and 19 GPa, therefore its ground-state structure is more stable. As the pressure exceeds 20 GPa, both phases possess almost the same magnetic moments.
    • 基金项目: 国家自然科学基金(批准号: 11374215)和吉林大学超硬材料国家重点实验室开放课题资助项目(批准号: 201304), 中国博士后科学基金面上资助项目(批准号: 200940501018)和辽宁省教育厅科学研究项目(批准号: L2014172)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374215), the Open Project of State Key Laboratory of Superhard Materials (Jilin University, China) (Grant No. 201304), the Scientific Research Foundation of the China Postdoctoral Program (Grant No. 200940501018), and the Scientific Study Project from Liaoning Ministry of Education, China (Grant No. L2014172).
    [1]

    Yamaguchi T, Sakita M, Nakamura M 1994 J. Magn. Magn. Mater. 215-216 529

    [2]

    Chen S K, Jin S, Tiefel T H, Hsieh Y F 1991 J. Appl. Phys. 70 6247

    [3]

    Elliott N 1963 Phys. Rev. 129 1120

    [4]

    Gallego J M, Boerma D O, Miranda R, Yndurain F 2005 Phys. Rev. Lett. 95 136102

    [5]

    Telling N D, Jones G A, Faunce C A, Grundy P J, Blythe H J, Joyce D E 2001 J: Vac. Sci. Technol. A 19 405

    [6]

    Kokado S, Fujima N, Harigaya K, Shimizu H, Sakuma A 2006 Phys. Stat. Sol. 3 3303

    [7]

    Kokado S, Fujima N, Harigaya K, Shimizu H, Sakuma A 2006 Phys. Rev. B 73 172410

    [8]

    Blancá E P, Desimoni J, Christensen N E, Emmerich H, Cottenier S 2009 Phys. Status Solidi B 246 909

    [9]

    Kong Y, Zhou R J, Li F S 1996 Phys. Rev. B 54 5460

    [10]

    Lv Z Q, Gao Y, Sun S H, Qv M G, Wang Z H, Shi Z P, Fu W T 2013 J. Magn. Magn. Mater. 333 39

    [11]

    Music D, Schneider J M 2006 Appl. Phys. Lett. 88 031914

    [12]

    Wu Z J, Meng J 2007 Appl. Phys. Lett. 90 241901

    [13]

    Zhao E J, Xiang H P, Meng J, Wu Z J 2007 Chem. Phys. Lett. 449 96

    [14]

    Takahashi Y, Imai Y, Kumagai T 2011 J. Magn. Magn. Mater. 323 2941

    [15]

    Monachesi P, Bjorkman T, Gasche T, Eriksson O 2013 Phys. Rev. B 88 054420

    [16]

    Rebaza A V G, Desimoni J, Blanca E P 2009 Physica B 404 2872

    [17]

    Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Zhang W X 2011 J. Magn. Magn. Mater. 323 2206

    [19]

    Landau L D 1937 Phys. Z. Soviet. 11 26

    [20]

    Landau L D 1937 JETP 7 19

    [21]

    Landau L D, Lifshitz E M 2007 Statistical Physics (Part I) Third Edition (Oxford: Butterworth-Heinemann) pp446-516

    [22]

    Scott J F 1974 Rev. Mod. Phys. 46 83

    [23]

    Shirane G 1974 Rev. Mod. Phys. 46 437

    [24]

    Baroni S, Gironcoli Sd, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [25]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [27]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [30]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [31]

    FRAZER B C 1958 Phys. Rev. 112 751

    [32]

    Jacobs H, Rechenbach D, Zachwieja U 1995 J. Alloys Compd. 227 10

    [33]

    Deng C M, Hou C F, Bao L L, Shi X R, Li Y W, Wang J G, Jiao H J 2007 Chem. Phys. Lett. 448 83

    [34]

    Silberclitt R 1969 Phys. Rev. 188 786

  • [1]

    Yamaguchi T, Sakita M, Nakamura M 1994 J. Magn. Magn. Mater. 215-216 529

    [2]

    Chen S K, Jin S, Tiefel T H, Hsieh Y F 1991 J. Appl. Phys. 70 6247

    [3]

    Elliott N 1963 Phys. Rev. 129 1120

    [4]

    Gallego J M, Boerma D O, Miranda R, Yndurain F 2005 Phys. Rev. Lett. 95 136102

    [5]

    Telling N D, Jones G A, Faunce C A, Grundy P J, Blythe H J, Joyce D E 2001 J: Vac. Sci. Technol. A 19 405

    [6]

    Kokado S, Fujima N, Harigaya K, Shimizu H, Sakuma A 2006 Phys. Stat. Sol. 3 3303

    [7]

    Kokado S, Fujima N, Harigaya K, Shimizu H, Sakuma A 2006 Phys. Rev. B 73 172410

    [8]

    Blancá E P, Desimoni J, Christensen N E, Emmerich H, Cottenier S 2009 Phys. Status Solidi B 246 909

    [9]

    Kong Y, Zhou R J, Li F S 1996 Phys. Rev. B 54 5460

    [10]

    Lv Z Q, Gao Y, Sun S H, Qv M G, Wang Z H, Shi Z P, Fu W T 2013 J. Magn. Magn. Mater. 333 39

    [11]

    Music D, Schneider J M 2006 Appl. Phys. Lett. 88 031914

    [12]

    Wu Z J, Meng J 2007 Appl. Phys. Lett. 90 241901

    [13]

    Zhao E J, Xiang H P, Meng J, Wu Z J 2007 Chem. Phys. Lett. 449 96

    [14]

    Takahashi Y, Imai Y, Kumagai T 2011 J. Magn. Magn. Mater. 323 2941

    [15]

    Monachesi P, Bjorkman T, Gasche T, Eriksson O 2013 Phys. Rev. B 88 054420

    [16]

    Rebaza A V G, Desimoni J, Blanca E P 2009 Physica B 404 2872

    [17]

    Perdew J P, Burke S, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [18]

    Zhang W X 2011 J. Magn. Magn. Mater. 323 2206

    [19]

    Landau L D 1937 Phys. Z. Soviet. 11 26

    [20]

    Landau L D 1937 JETP 7 19

    [21]

    Landau L D, Lifshitz E M 2007 Statistical Physics (Part I) Third Edition (Oxford: Butterworth-Heinemann) pp446-516

    [22]

    Scott J F 1974 Rev. Mod. Phys. 46 83

    [23]

    Shirane G 1974 Rev. Mod. Phys. 46 437

    [24]

    Baroni S, Gironcoli Sd, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [25]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [27]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [30]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [31]

    FRAZER B C 1958 Phys. Rev. 112 751

    [32]

    Jacobs H, Rechenbach D, Zachwieja U 1995 J. Alloys Compd. 227 10

    [33]

    Deng C M, Hou C F, Bao L L, Shi X R, Li Y W, Wang J G, Jiao H J 2007 Chem. Phys. Lett. 448 83

    [34]

    Silberclitt R 1969 Phys. Rev. 188 786

  • [1] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究. 物理学报, 2022, 71(1): 017102. doi: 10.7498/aps.71.20211163
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211163
    [3] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [4] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [5] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] 成泰民, 张龙燕, 孙腾, 张新欣, 朱林, 李林. 高压下有序晶态合金Fe3Pt的低能声子不稳定性及磁性反常. 物理学报, 2015, 64(14): 146301. doi: 10.7498/aps.64.146301
    [7] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [8] 李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳. Ag-N共掺p型ZnO的第一性原理研究. 物理学报, 2013, 62(16): 167701. doi: 10.7498/aps.62.167701
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [11] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [12] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究 . 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [13] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [14] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [15] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [16] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [17] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [18] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] 陈 琨, 范广涵, 章 勇, 丁少锋. In-N共掺杂ZnO第一性原理计算. 物理学报, 2008, 57(5): 3138-3147. doi: 10.7498/aps.57.3138
    [20] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
计量
  • 文章访问数:  2521
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-05

高压下'-Fe4N晶态合金的声子稳定性与磁性

  • 1. 沈阳化工大学数理系, 沈阳 110142;
  • 2. 东北大学理学院, 沈阳 110004
    基金项目: 国家自然科学基金(批准号: 11374215)和吉林大学超硬材料国家重点实验室开放课题资助项目(批准号: 201304), 中国博士后科学基金面上资助项目(批准号: 200940501018)和辽宁省教育厅科学研究项目(批准号: L2014172)资助的课题.

摘要: 利用基于密度泛函理论的第一性原理研究了高压下有序晶态-Fe4N合金的晶格动力学稳定性与磁性. 对比没有考虑磁性的-Fe4N的声子谱, 得出压力小于1 GPa时, 自发磁化诱导了铁磁相-Fe4N基态晶格动力学稳定. 压力在1.03-31.5 GPa时, 线上的点(0.37, 0.37, 0)、对称点X和M 上相继出现了声子谱软化现象. 压力在31.5-60.8 GPa时, 压致效应与自发磁化对诸原子的作用达到了稳定平衡, 表现出了声子谱稳定. 压力大于61.3 GPa时, 随着压力的增大压力诱导体系动力学不稳定性越强. 通过软模相变理论对于-Fe4N, 在10 GPa下的声学支声子的M点处软化现象的处理, 发现了动力学稳定的高压新相P2/m-Fe4N. 压力小于1 GPa时高压新相P2/m-Fe4N 是热力学稳定的相, 且磁矩与-Fe4N的磁矩几乎相同. 2.9-19 GPa时, P2/m相的焓比相的焓小, 基态结构更稳定. 大于20 GPa时, 两相磁矩几乎相同.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回