搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内嵌CuO薄膜对并五苯薄膜晶体管性能的改善

聂国政 邹代峰 钟春良 许英

引用本文:
Citation:

内嵌CuO薄膜对并五苯薄膜晶体管性能的改善

聂国政, 邹代峰, 钟春良, 许英

Analysis of improved characteristics of pentacene thin-film transistor with an embedded copper oxide layer

Nie Guo-Zheng, Zou Dai-Feng, Zhong Chun-Liang, Xu Ying
PDF
导出引用
  • 制备了基于内嵌氧化物铜(CuO)薄膜的并五苯薄膜晶体管器件. 将3 nm CuO薄膜内嵌入到并五苯(pentacene)中, 作为空穴注入层, 降低电极与并五苯之间的空穴注入势垒. 相对于纯并五苯薄膜晶体管器件, 研制的晶体管的迁移率、阈值电压(VTH)、电流开关比(Ion/Ioff) 等参数都有明显改善. X射线光电子能谱数据表明, 这种空穴注入势垒的降低源自并五苯向CuO的电子转移.
    Organic thin-film transistor (OTFT) based on pentacene semiconductor with an embedded copper oxide (CuO) thin layer is investigated. With the 3 nm-thick CuO layer embedded in the pentacene semiconductor, the drain current of the OTFT increases more than 3 times compared with that of pentacene organic field-effect transistor without CuO layer, and the absolute threshold voltage reduces from -21 V to -7.9 V. The hole mobility and current on/off ratio are much improved. It is interpreted by the mechanism based on the analysis of the interface charge transfer between pentacene layer and CuO layer. Results of X-ray photoelectron reveal electron transfer from pentacene to high work function CuO and the formation of charge transfer (CT) complexes based on electron transfer near the contact of CuO and pentacene. The CT complexes between pentacene layer and CuO layer could reduce the exponential density of state near the band edge of pentacene and the pentacene bulk hole trap density, and enhance the pentacene bulk hole carriers injection, which leads to the improvement of the field-effect mobility of OTFT with CuO layer. Electrons are transfered from the highest occupied molecular orbital of pentacene to the thin CuO layer which can generate holes in pentacene. The generated hole has the same effect as that with applying negative gate voltage which influences the threshold voltage. The drain current of the device increases and the threshold voltage shifts from -21 V to -7.9 V. Therefore, the thin CuO layer that is directly embedded in the organic semiconductor layer, serves as the hole-injection layer, which is responsible for reducing the contact barrier of OTFT with CuO layer.
      通信作者: 聂国政, gzhnie@hnust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11447212, 11204076)、湖南省教育厅科学研究项目(批准号: 13C323) 和湖南省自然科学基金项目(批准号: 2015JJ3060)资助的课题.
      Corresponding author: Nie Guo-Zheng, gzhnie@hnust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11447212, 11204076), the Scientific Research Fund of Hunan provincial Education Department, China (Grant No. 13C323), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3060).
    [1]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [2]

    Crone B K, Dodabalapur A, Sarpeshkar R, Filas R W, Lin Y Y, Bao Z, O'Neill J H, Li W, Katz H E 2001 J. Appl. Phys. 89 5125

    [3]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [4]

    Yu X G, Yu J S, Huang W, Zeng H J 2012 Chin. Phys. B 21 117307

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [聂国政, 彭俊彪, 周仁龙 2011 物理学报 60 127304]

    [6]

    Duan P F, Hu Y S, Guo X Y, Liu X Y, Fan Y 2015 Chin. J. Lumin. 36 480 (in Chinese) [端鹏飞, 胡永生, 郭晓阳, 刘星元, 范翊 2015 发光学报 36 480]

    [7]

    Nausieda I, Ryu K K, He D D, Akinwande A I, Bulovic V, Sodini C G 2010 IEEE Trans. Electron Devices 57 3027

    [8]

    Chung Y, Johnson O, Deal M, Nishi Y, Murmann B, Bao Z 2012 Appl. Phys. Lett. 101 063304

    [9]

    Kergoat L, Herlogsson L, Piro B, Pham M C, Horowitz G, Crispin X, Berggren M 2012 PNAS 109 8394

    [10]

    Moon H, Im D, Yoo S, Menber 2013 IEEE Electron Device Lett. 34 1014

    [11]

    Wu D, Zhang Q, Tao M 2006 Phys. Rev. B 73 235206

    [12]

    Murdoch G B, Greiner M, Helander M G, Wang Z B, Lu Z H 2008 Appl. Phys. Lett. 93 083309

    [13]

    Koffyberg F P, Benko F A 1982 J. Appl. Phys. 5 1173

    [14]

    Park J W, Baeg J, Ghim J, Kang S J, Park J H, Kim D Y 2007 Electrochem. Solid-State Lett. 10 H340

    [15]

    Koch N, Ghijsen J, Johnson R L, Kahn A, Ghijsen J, Pireaux J J, Schwartz J, Johnson R L, Elschner A 2003 Appl. Phys. Lett. 82 70

    [16]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [17]

    Walzer K, Maennig B, Pfeiffer M, Leo K 2007 Chem. Rev. 107 1233

    [18]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [19]

    Minari T, Miyadera T, Tsukagoshi K, Aoyagi Y, Ito H 2007 Appl. Phys. Lett. 91 053508

    [20]

    Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P 2001 Phys. Rev. B 64 195208

    [21]

    Yoneya N, Noda Hirai M, Wada M, Kasahara J 2004 Appl. Phys. Lett. 85 4663

  • [1]

    Dimitrakopoulos C D, Malenfant P R L 2002 Adv. Mater. 14 99

    [2]

    Crone B K, Dodabalapur A, Sarpeshkar R, Filas R W, Lin Y Y, Bao Z, O'Neill J H, Li W, Katz H E 2001 J. Appl. Phys. 89 5125

    [3]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [4]

    Yu X G, Yu J S, Huang W, Zeng H J 2012 Chin. Phys. B 21 117307

    [5]

    Nie G Z, Peng J B, Zhou R L 2011 Acta Phys. Sin. 60 127304 (in Chinese) [聂国政, 彭俊彪, 周仁龙 2011 物理学报 60 127304]

    [6]

    Duan P F, Hu Y S, Guo X Y, Liu X Y, Fan Y 2015 Chin. J. Lumin. 36 480 (in Chinese) [端鹏飞, 胡永生, 郭晓阳, 刘星元, 范翊 2015 发光学报 36 480]

    [7]

    Nausieda I, Ryu K K, He D D, Akinwande A I, Bulovic V, Sodini C G 2010 IEEE Trans. Electron Devices 57 3027

    [8]

    Chung Y, Johnson O, Deal M, Nishi Y, Murmann B, Bao Z 2012 Appl. Phys. Lett. 101 063304

    [9]

    Kergoat L, Herlogsson L, Piro B, Pham M C, Horowitz G, Crispin X, Berggren M 2012 PNAS 109 8394

    [10]

    Moon H, Im D, Yoo S, Menber 2013 IEEE Electron Device Lett. 34 1014

    [11]

    Wu D, Zhang Q, Tao M 2006 Phys. Rev. B 73 235206

    [12]

    Murdoch G B, Greiner M, Helander M G, Wang Z B, Lu Z H 2008 Appl. Phys. Lett. 93 083309

    [13]

    Koffyberg F P, Benko F A 1982 J. Appl. Phys. 5 1173

    [14]

    Park J W, Baeg J, Ghim J, Kang S J, Park J H, Kim D Y 2007 Electrochem. Solid-State Lett. 10 H340

    [15]

    Koch N, Ghijsen J, Johnson R L, Kahn A, Ghijsen J, Pireaux J J, Schwartz J, Johnson R L, Elschner A 2003 Appl. Phys. Lett. 82 70

    [16]

    Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504

    [17]

    Walzer K, Maennig B, Pfeiffer M, Leo K 2007 Chem. Rev. 107 1233

    [18]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [19]

    Minari T, Miyadera T, Tsukagoshi K, Aoyagi Y, Ito H 2007 Appl. Phys. Lett. 91 053508

    [20]

    Maennig B, Pfeiffer M, Nollau A, Zhou X, Leo K, Simon P 2001 Phys. Rev. B 64 195208

    [21]

    Yoneya N, Noda Hirai M, Wada M, Kasahara J 2004 Appl. Phys. Lett. 85 4663

  • [1] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [2] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [3] 雷达, 孟根其其格, 张荷亮, 智颖飙. 一种平行栅碳纳米管阵列阴极的场发射特性研究. 物理学报, 2013, 62(24): 248502. doi: 10.7498/aps.62.248502
    [4] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能. 物理学报, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [5] 吕文辉, 张帅. 接触电阻对碳纳米管场发射的影响. 物理学报, 2012, 61(1): 018801. doi: 10.7498/aps.61.018801
    [6] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [7] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [8] 聂国政, 彭俊彪, 周仁龙. CuI/Al双层电极的有机场效应晶体管. 物理学报, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [9] 刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究. 物理学报, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [10] 陈跃宁, 徐征, 赵谡玲, 孙钦军, 尹飞飞, 董宇航. 最小二乘拟合计算有机薄膜晶体管迁移率的研究. 物理学报, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [11] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [12] 孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生. 有机薄膜晶体管中接触效应的研究. 物理学报, 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [13] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究. 物理学报, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [14] 袁广才, 徐 征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢. 对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究. 物理学报, 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [15] 张 喆, 张 杰, 李玉同, 郝作强, 郑志远, 远晓辉, 王兆华. 空气中激光等离子体通道导电性能的研究. 物理学报, 2006, 55(1): 357-361. doi: 10.7498/aps.55.357
    [16] 薛卫东, 朱正和. CUO基态分子热力学稳定性研究. 物理学报, 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
    [17] 薛卫东, 王红艳, 朱正和, 张广丰, 邹乐西, 陈长安, 孙颖. CUO分子结构与势能函数. 物理学报, 2002, 51(11): 2480-2484. doi: 10.7498/aps.51.2480
    [18] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [19] 王楠林, 邓明, 阮可青, 种燕, 潘国强, 曹烈兆. Bi_2Sr_2CuO_y晶体中电子局域化. 物理学报, 1995, 44(11): 1819-1824. doi: 10.7498/aps.44.1819
    [20] 张恩虬;高怀蓉. 量测电子管接触电势差的改进方法. 物理学报, 1956, 12(3): 271-274. doi: 10.7498/aps.12.271
计量
  • 文章访问数:  3283
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-07-08
  • 刊出日期:  2015-11-05

内嵌CuO薄膜对并五苯薄膜晶体管性能的改善

  • 1. 湖南科技大学物理与电子科学学院, 湘潭 411201;
  • 2. 华南理工大学高分子光电材料与器件研究所, 发光材料与器件国家重点实验室, 广州 510640;
  • 3. 湖南工业大学理学院, 株洲 412007
  • 通信作者: 聂国政, gzhnie@hnust.edu.cn
    基金项目: 国家自然科学基金(批准号: 11447212, 11204076)、湖南省教育厅科学研究项目(批准号: 13C323) 和湖南省自然科学基金项目(批准号: 2015JJ3060)资助的课题.

摘要: 制备了基于内嵌氧化物铜(CuO)薄膜的并五苯薄膜晶体管器件. 将3 nm CuO薄膜内嵌入到并五苯(pentacene)中, 作为空穴注入层, 降低电极与并五苯之间的空穴注入势垒. 相对于纯并五苯薄膜晶体管器件, 研制的晶体管的迁移率、阈值电压(VTH)、电流开关比(Ion/Ioff) 等参数都有明显改善. X射线光电子能谱数据表明, 这种空穴注入势垒的降低源自并五苯向CuO的电子转移.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回