搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质

孙佳石 李树伟 石琳琳 周天民 李香萍 张金苏 程丽红 陈宝玖

引用本文:
Citation:

试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质

孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖

Experimental optimal design of the Er3+/Yb3+ codoped BaGd2ZnO5 phosphor and its upconversion luminescence properties

Sun Jia-Shi, Li Shu-Wei, Shi Lin-Lin, Zhou Tian-Min, Li Xiang-Ping, Zhang Jin-Su, Cheng Li-Hong, Chen Bao-Jiu
PDF
导出引用
  • 为得到绿光和红光最大发光强度的Er3+/Yb3+共掺BaGd2ZnO5上转换材料荧光粉, 首先采用试验优化设计中的均匀设计初步寻找Er3+/Yb3+合理的掺杂浓度; 其次通过二次通用旋转组合设计进一步优化实验, 建立起Er3+/Yb3+掺杂浓度与绿光和红光发光强度的回归方程; 最后通过遗传算法计算出方程的最优解, 即绿光和红光最大发光强度时对应的Er3+/Yb3+掺杂浓度. 利用传统的高温固相法分别制备出最优样品. 采用X 射线衍射对得到荧光粉的晶体结构进行了分析, 证明了所有产物均为纯相BaGd2ZnO5. 采用980 nm抽运激光作为激发源, 在同样的条件下测量了样品的上转换荧光发射光谱, 从中可见样品有较强的红光发射和绿光发射, 发光中心位于662, 551和527 nm, 分别对应于4F9/2→4I15/2, 4S3/2→4I15/2 及2H11/2→4I15/2能级跃迁. 研究了绿光和红光最优样品的上转换发光强度与激光器工作电流之间的关系, 通过分析发现红色和绿色上转换发光均为双光子过程. 由归一化的绿色上转换发射光谱可以看出, 激光器工作电流导致的样品温度变化可以忽略不计. 由于能级2H11/2和4S3/2之间存在热平衡, 并满足玻尔兹曼分布, 由此探讨了绿光最优样品上转换发射光谱中的绿色发射与温度的关系, 计算出2H11/2和4S3/2之间的能级差为ΔE=926.11 cm-1. 研究了绿光最优样品的温度效应, 随着温度的升高, 发射强度逐渐变小, 出现了温度猝灭现象. 并计算了样品的激活能, 分别为总体激活能ΔE总=0.45 eV, 绿光激活能ΔE绿=0.45 eV, 红光激活能ΔE红=0.46 eV.
    In order to obtain the Er3+/Yb3+ co-doped BaGd2ZnO5 up-conversion phosphor which has the maximum green and red emission intensity, firstly, the method of homogeneous design rooted in the experimental optimal design is employed to search optimum Er3+/Yb3+doping concentration preliminarily. Next, the quadratic general rotary unitized design is adopted to further optimize the experiment, and the regression equation in green and red emission intensity is established as a function of the doping concentration of Er3+/Yb3+. Finally, the optimal solution, that is, the doping concentration of Er3+/Yb3+ corresponding to the maximum emission intensity, is calculated by genetic algorithm. The optimal Er3+/Yb3+co-doped BaGd2ZnO5 phosphor is synthesized by the conventional high temperature solid state method. The crystal structure of as-prepared products is characterized by X-ray diffraction (XRD), and the results show that all the Er3+/Yb3+co-doped BaGd2ZnO5 phosphors we synthesized are of pure phase. The steady-state up-conversion (UC) emission spectra of products are measured under the excitation of a continuous 980 nm laser diode at different working currents. From the UC luminescent spectra of Er3+/Yb3+co-doped BaGd2ZnO5 phosphor, we can see a red emission centered at 662 nm, two green emissions centered at 551 nm and 527 nm, which are assigned to 4F9/2→4I15/2, 4S3/2→4I15/2 and 2H11/2→$4I15/2 transitions of Er3+ ion, respectively. The dependences of green and red UC emission intensities of optimal samples on working current are investigated, indicating that the red emission and green emission of optimal samples both originate from two-photon process. From the normalized green UC emission spectra, it can be concluded that the experimental laser working current induced temperature variation of samples can be omitted. According to Boltzmann distribution law and the thermal equilibrium existing between the levels of 2H11/2 and 4S3/2, the relationship between green emission and temperature in the optimal green UC emission sample is discussed in depth, and the energy level gap between 2H11/2 level and 4S3/2 level is calculated to be 926.11 cm-1. Through the study of the temperature effect on the optimal green UC emission sample, we find that the emission intensity decreases with the increasing of the temperature, owing to the thermal quenching effect. Furthermore, we calculate the activation energies of the samples, the activation energies of the green emission, red emission, and the overall emission are deduced to be 0.45, 0.46, and 0.45 eV, respectively.
      Corresponding author: Sun Jia-Shi, sunjs@dlmu.edu.cn;lishuwei12@126.com ; Li Shu-Wei, sunjs@dlmu.edu.cn;lishuwei12@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104023, 11104024, 11274057) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132014087, 3132014327, 3132013100).
    [1]

    Hua J T, Chen B J, Sun J S, Cheng L H, Zhong H Y 2010 Chin. J. Opt. Appl. Opt. 3 301 (in Chinese) [花景田, 陈宝玖, 孙佳石, 程丽红, 仲海洋 2010 中国光学与应用光学 3 301]

    [2]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [3]

    Boyer J C, van Veggel F C J M 2010 Nanoscale 2 1417

    [4]

    Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W 2013 Chem. Commun. 49 3781

    [5]

    Hao S W, Chen G Y, Yang C H 2013 Theranostics 3 331

    [6]

    Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J, Chen Y 2011 Chin. Phys. B 20 017803

    [7]

    Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 024205

    [8]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1797

    [9]

    Shanmugam V, Selvakumar S, Yey C S 2014 Chem. Soc. Rev. 43 6254

    [10]

    Wang Y, Qin W P, Di W H, Zhang J S, Cao C Y 2008 Chin. Phys. B 17 3300

    [11]

    Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H, Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804

    [12]

    Wang Q G, Su L B, Li H J, Zheng L H, Xu X D, Tang H L, Jiang D P, Wu F, Xu J 2012 Chin. Phys. B 21 026101

    [13]

    Xu W, Li C R, Cao B S, Dong B 2010 Chin. Phys. B 19 127804

    [14]

    Dacosta M V, Doughan S, Han Y, Krull U J 2014 Anal. Chim. Acta 832 1

    [15]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210

    [16]

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp174-180 (in Chinese) [任露泉 2009 试验设计及其优化(北京: 科学出版社) 第174–180 页]

    [17]

    He W, Xue W D, Tang B 2012 The Method of Optimal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp191-194 (in Chinese) [何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析(北京: 化学工业出版社) 第191–194 页]

    [18]

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys. Sin 62 203301 (in Chinese) [翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301]

    [19]

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933 (in Chinese) [程仕平, 徐慧, 王德志, 王光君, 吴壮志2007 稀有金属材料与工程 36 1933]

    [20]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862

    [21]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845

    [22]

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002 (in Chinese) [石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014光子学报 43 1116002]

    [23]

    Mi R Y, Xia Z G, Liu H K 2013 Acta Phys. Sin. 62 137802 (in Chinese) [米瑞宇, 夏志国, 刘海坤2013 物理学报 62 137802]

    [24]

    Guo R, Shi P F, Cheng X Q, Li J 2007 Chin. J. Inorg. Chem. 23 1387 (in Chinese) [郭瑞, 史鹏飞, 程新群, 李娟 2007 无机化学学报 23 1387]

    [25]

    Li P L, Xu Z, Zhao S L, Wang Y S, Zhang F J 2012 Chin. Phys. B 21 047803

    [26]

    Yu T T 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [于婷婷 2011 硕士学位论文(大连: 大连海事大学)]

    [27]

    Zheng H, Xiang S Y, Chen B J 2014 Chin. J. Lumin. 35 800 (in Chinese) [郑辉, 相苏原, 陈宝玖 2014 发光学报 35 800]

    [28]

    Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Zhong H, Fu S B, Hua R N, Xia H P 2014 RSC Adv. 4 47556

    [29]

    Xiang S Y, Chen B J, Zhang J S, Li X P, Sun J S, Zheng H, Wu Z L, Zhong H, Yu H Q, Xia H P 2014 Opt. Mater. Exp. 4 1966

    [30]

    Li S Y, Niklasson G A, Granqvist C G2014 J. Appl. Phys. 115 053513

    [31]

    Wei Y L, Li X M, Guo H 2014 Opt. Mater. Exp. 4 1367

    [32]

    Luo X J, Yuminami R, Sakurai T, Akimoto K 2013 J. Rare Earths 31 267

    [33]

    Sun H Q, Zhang Q W, Wang X S, Gu M 2014 Ceram. Inter. 40 2581

    [34]

    Wang Q, Zhang W H, Ouyang S Y, Yang B, Zhang Y P, Xia H P 2015 Acta Photo. Sin. 44 0116004 (in Chinese) [王倩, 张为欢, 欧阳绍业, 杨斌, 张约品, 夏海平 2015 光子学报 44 0116004]

    [35]

    Zhou T M, Zhang Y Q, Wu Z L, Chen B J 2015 J. Rare Earths. 33 686

    [36]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 Cryst. Eng. Com. 14 1760

  • [1]

    Hua J T, Chen B J, Sun J S, Cheng L H, Zhong H Y 2010 Chin. J. Opt. Appl. Opt. 3 301 (in Chinese) [花景田, 陈宝玖, 孙佳石, 程丽红, 仲海洋 2010 中国光学与应用光学 3 301]

    [2]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [3]

    Boyer J C, van Veggel F C J M 2010 Nanoscale 2 1417

    [4]

    Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W 2013 Chem. Commun. 49 3781

    [5]

    Hao S W, Chen G Y, Yang C H 2013 Theranostics 3 331

    [6]

    Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J, Chen Y 2011 Chin. Phys. B 20 017803

    [7]

    Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 024205

    [8]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1797

    [9]

    Shanmugam V, Selvakumar S, Yey C S 2014 Chem. Soc. Rev. 43 6254

    [10]

    Wang Y, Qin W P, Di W H, Zhang J S, Cao C Y 2008 Chin. Phys. B 17 3300

    [11]

    Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H, Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804

    [12]

    Wang Q G, Su L B, Li H J, Zheng L H, Xu X D, Tang H L, Jiang D P, Wu F, Xu J 2012 Chin. Phys. B 21 026101

    [13]

    Xu W, Li C R, Cao B S, Dong B 2010 Chin. Phys. B 19 127804

    [14]

    Dacosta M V, Doughan S, Han Y, Krull U J 2014 Anal. Chim. Acta 832 1

    [15]

    Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210

    [16]

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp174-180 (in Chinese) [任露泉 2009 试验设计及其优化(北京: 科学出版社) 第174–180 页]

    [17]

    He W, Xue W D, Tang B 2012 The Method of Optimal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp191-194 (in Chinese) [何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析(北京: 化学工业出版社) 第191–194 页]

    [18]

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys. Sin 62 203301 (in Chinese) [翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301]

    [19]

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933 (in Chinese) [程仕平, 徐慧, 王德志, 王光君, 吴壮志2007 稀有金属材料与工程 36 1933]

    [20]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862

    [21]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845

    [22]

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002 (in Chinese) [石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014光子学报 43 1116002]

    [23]

    Mi R Y, Xia Z G, Liu H K 2013 Acta Phys. Sin. 62 137802 (in Chinese) [米瑞宇, 夏志国, 刘海坤2013 物理学报 62 137802]

    [24]

    Guo R, Shi P F, Cheng X Q, Li J 2007 Chin. J. Inorg. Chem. 23 1387 (in Chinese) [郭瑞, 史鹏飞, 程新群, 李娟 2007 无机化学学报 23 1387]

    [25]

    Li P L, Xu Z, Zhao S L, Wang Y S, Zhang F J 2012 Chin. Phys. B 21 047803

    [26]

    Yu T T 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [于婷婷 2011 硕士学位论文(大连: 大连海事大学)]

    [27]

    Zheng H, Xiang S Y, Chen B J 2014 Chin. J. Lumin. 35 800 (in Chinese) [郑辉, 相苏原, 陈宝玖 2014 发光学报 35 800]

    [28]

    Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Zhong H, Fu S B, Hua R N, Xia H P 2014 RSC Adv. 4 47556

    [29]

    Xiang S Y, Chen B J, Zhang J S, Li X P, Sun J S, Zheng H, Wu Z L, Zhong H, Yu H Q, Xia H P 2014 Opt. Mater. Exp. 4 1966

    [30]

    Li S Y, Niklasson G A, Granqvist C G2014 J. Appl. Phys. 115 053513

    [31]

    Wei Y L, Li X M, Guo H 2014 Opt. Mater. Exp. 4 1367

    [32]

    Luo X J, Yuminami R, Sakurai T, Akimoto K 2013 J. Rare Earths 31 267

    [33]

    Sun H Q, Zhang Q W, Wang X S, Gu M 2014 Ceram. Inter. 40 2581

    [34]

    Wang Q, Zhang W H, Ouyang S Y, Yang B, Zhang Y P, Xia H P 2015 Acta Photo. Sin. 44 0116004 (in Chinese) [王倩, 张为欢, 欧阳绍业, 杨斌, 张约品, 夏海平 2015 光子学报 44 0116004]

    [35]

    Zhou T M, Zhang Y Q, Wu Z L, Chen B J 2015 J. Rare Earths. 33 686

    [36]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 Cryst. Eng. Com. 14 1760

  • [1] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [2] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控. 物理学报, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [3] 白鹏, 张月蘅, 沈文忠. 半导体上转换单光子探测技术研究进展. 物理学报, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [4] 孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖. BaY2ZnO5:Tm3+/Yb3+荧光粉的试验优化设计合成及发光性质研究. 物理学报, 2017, 66(10): 100201. doi: 10.7498/aps.66.100201
    [5] 潘成龙, 刘红利, 郭芸, 景姝, 孙静, 周禾丰, 王华. BaMgF4:Er3+, Yb3+上转换纳米晶的合成及其发光性能研究. 物理学报, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [6] 翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖. 试验优化设计Tm3+/Yb3+共掺钼酸钇钠荧光粉上转换发光性质的研究. 物理学报, 2013, 62(20): 203301. doi: 10.7498/aps.62.203301
    [7] 郭琳娜, 王育华. 共沉淀法制备Y2SiO5∶Er3+ ,Yb3+ ,Tm3+及其上转换发光性能研究. 物理学报, 2011, 60(2): 027803. doi: 10.7498/aps.60.027803
    [8] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光. 物理学报, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [9] 董力强, 黄世华, 温红宇, 杨艳民, 王大伟, 段晓霞. Er3+-Yb3+共掺碲酸盐玻璃上转换绿光激发过程的研究. 物理学报, 2009, 58(12): 8617-8622. doi: 10.7498/aps.58.8617
    [10] 董力强, 黄世华, 贾晓霞, 陈宝玖. 方波激发下Er3+上转换绿光发光动力学过程的研究. 物理学报, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [11] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [12] 张金芳, 谭 磊, 刘利伟, 丁彩英. 运动级联型三能级原子双光子过程的熵演化. 物理学报, 2008, 57(4): 2205-2211. doi: 10.7498/aps.57.2205
    [13] 罗建乔, 孙敦陆, 张庆礼, 刘文鹏, 谷长江, 吴路生, 殷绍唐. Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光. 物理学报, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [14] 李成仁, 明成国, 李淑凤, 丁建华, 王宝成, 张 丽. 镱铒共掺Al2O3薄膜上转换机理及其温度特性. 物理学报, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [15] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [16] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理. 物理学报, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [17] 丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威. 980 nm激发下Er3+/Yb3+共掺杂ZrO2-Al2O3粉末的上转换发光特性. 物理学报, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [18] 谭 浩, 宋 峰, 苏 静, 商美茹, 付 博, 张光寅, 程振祥, 陈焕矗. Er3+,Tm3+共掺的NaY(WO4)2晶体的光谱分析和上转换发光. 物理学报, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [19] 吴长锋, 秦伟平, 秦冠仕, 黄世华, 张继森, 赵 丹, 吕少哲, 林海燕, 刘晃清. TiO2∶Mo体系的光子雪崩上转换. 物理学报, 2003, 52(6): 1540-1544. doi: 10.7498/aps.52.1540
    [20] 宋峰, 谭浩, 商美茹, 张光寅, 程振祥, 陈焕矗. 掺Er3+的NaY(WO4)2晶体的光谱特性. 物理学报, 2002, 51(10): 2375-2379. doi: 10.7498/aps.51.2375
计量
  • 文章访问数:  3439
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-09-18
  • 刊出日期:  2015-12-05

试验优化设计Er3+/Yb3+共掺BaGd2ZnO5荧光粉及其上转换发光性质

    基金项目: 国家自然科学基金(批准号: 11104023, 11104024, 11274057)和中央高校基本科研业务费(批准号: 3132014087, 3132014327, 3132013100)资助的课题.

摘要: 为得到绿光和红光最大发光强度的Er3+/Yb3+共掺BaGd2ZnO5上转换材料荧光粉, 首先采用试验优化设计中的均匀设计初步寻找Er3+/Yb3+合理的掺杂浓度; 其次通过二次通用旋转组合设计进一步优化实验, 建立起Er3+/Yb3+掺杂浓度与绿光和红光发光强度的回归方程; 最后通过遗传算法计算出方程的最优解, 即绿光和红光最大发光强度时对应的Er3+/Yb3+掺杂浓度. 利用传统的高温固相法分别制备出最优样品. 采用X 射线衍射对得到荧光粉的晶体结构进行了分析, 证明了所有产物均为纯相BaGd2ZnO5. 采用980 nm抽运激光作为激发源, 在同样的条件下测量了样品的上转换荧光发射光谱, 从中可见样品有较强的红光发射和绿光发射, 发光中心位于662, 551和527 nm, 分别对应于4F9/2→4I15/2, 4S3/2→4I15/2 及2H11/2→4I15/2能级跃迁. 研究了绿光和红光最优样品的上转换发光强度与激光器工作电流之间的关系, 通过分析发现红色和绿色上转换发光均为双光子过程. 由归一化的绿色上转换发射光谱可以看出, 激光器工作电流导致的样品温度变化可以忽略不计. 由于能级2H11/2和4S3/2之间存在热平衡, 并满足玻尔兹曼分布, 由此探讨了绿光最优样品上转换发射光谱中的绿色发射与温度的关系, 计算出2H11/2和4S3/2之间的能级差为ΔE=926.11 cm-1. 研究了绿光最优样品的温度效应, 随着温度的升高, 发射强度逐渐变小, 出现了温度猝灭现象. 并计算了样品的激活能, 分别为总体激活能ΔE总=0.45 eV, 绿光激活能ΔE绿=0.45 eV, 红光激活能ΔE红=0.46 eV.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回