搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响

高鹏飞 刘铁 柴少伟 董蒙 王强

引用本文:
Citation:

磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响

高鹏飞, 刘铁, 柴少伟, 董蒙, 王强

Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process

Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang
PDF
导出引用
  • 实验研究了磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95 合金凝固过程中(Tb, Dy)Fe2相取向行为及合金磁性能的影响. 结果表明, 将强磁场作用于Tb0.27Dy0.73Fe1.95合金的凝固过程可以制备出(Tb, Dy)Fe2相沿111取向的组织, 同时显著提高了合金的磁致伸缩性能; 通过提高磁感应强度可以在更快的冷却速率下得到111取向的组织; 在410 T范围内, 随着冷却速率的增加, (Tb, Dy)Fe2相沿111取向所需的磁感应强度增加, 而发生110取向的磁感应强度减小. 随着冷却速率的增加, 合金的饱和磁化强度增加, 而强磁场的施加对合金饱和磁化强度的变化没有明显影响. (Tb, Dy)Fe2相的取向行为受(Tb, Dy)Fe3相取向行为的影响, 且由磁晶各向异性能与磁场作用时间共同控制.
    The rare-earth giant magnetostrictive material Tb0.27Dy0.73Fe1.95 is one of the most important functional magnetic materials. Their superior properties include high saturation magnetostrictive coefficient at room temperature, high electromechanical coupling coefficients, high output power, fast response, high energy density, and non-contact drive. Thus, they can be used to build sensors, precision machinery, magnetomechanical transducers, and adaptive vibration-control systems. In this material, the magnetic phase (Tb, Dy)Fe2 has a typical MgCu2-type cubic Laves phase structure and exhibits different magnetostrictive properties along different crystal orientations. The 111 direction of this phase is the easy magnetization axis, along which the linear magnetostriction is higher than other directions. Thus, researchers have focused on preparing (Tb, Dy)Fe2 with a crystallographic orientation along or close to the 111 direction. Generally, the directional solidification method is used to prepare the Tb0.27Dy0.73Fe1.95 alloy. However, a crystal orientated along the 110 or 112 direction is always obtained and both of these directions require a high external magnetic field for improved magnetostrictive performance. The 111 preferred growth orientation can be acquired using seed crystal technology. However, the relatively low growth velocity can cause the appearance of the linear (Tb, Dy)Fe3 phase which induces a high brittleness of the material. Therefore, new methods to prepare Tb0.27Dy0.73Fe1.95 products with high 111 orientation at higher growth velocity are required. In this paper, we solidify the Tb0.27Dy0.73Fe1.95 alloys under various high magnetic field and cooling rate conditions. We study the effects of the magnetic flux density and cooling rate on the crystal orientation of the (Tb, Dy)Fe2 phase and the magnetization behavior of the alloys. It is found that after field-treated solidification, a high 111 orientation of (Tb, Dy)Fe2 along the magnetic field direction can be produced. As a consequence, the magnetostriction without applying stress remarkably increases. By increasing the magnetic flux density applied during the solidification of the Tb0.27Dy0.73Fe1.95 alloys, the 111 orientation of (Tb, Dy)Fe2 could be obtained at higher cooling rates. Ranging from 4 T to 10 T, with increasing cooling rate the magnetic flux density, at which the 111 or 110 orientation of (Tb, Dy)Fe2 occurs, increases or decreases, respectively. The saturated magnetization of the alloys increases with increasing cooling rate. The application of the magnetic fields does not affect the saturated magnetization.
      通信作者: 刘铁, liutie@epm.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51425401, 51574073, 51174056)和中央高校基本科研业务费(批准号: N140901001, N130302005)资助的课题.
      Corresponding author: Liu Tie, liutie@epm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51425401, 51574073, 51174056), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. N140901001, N130302005).
    [1]

    Clark A E, Belson H 1972 Phys. Rev. B 5 3642

    [2]

    Dhilsha R, Rajeshwari P M, Rajendran V 2005 Def. Sci. J. 55 13

    [3]

    Xu L H, Jiang C B, Xu H B 2006 Appl. Phys. Lett. 89 192507

    [4]

    Zhang C S, Ma T Y, Yan M 2011 Acta Phys. Sin. 60 037505 (in Chinese) [张昌盛, 马天宇, 严密 2011 物理学报 60 037505]

    [5]

    Ren W J, Zhang Z D 2013 Chin. Phys. B 22 077507

    [6]

    Yan B P, Tang Z F, L F Z, Yang K J, Zhang C M, Li L Y 2014 Chin. Phys. B 23 127504

    [7]

    Wang K, Liu T, Gao P F, Wang Q, Liu Y, He J C 2015 Chin. Phys. Lett. 32 37502

    [8]

    Gao P F, Liu T, Dong M, Yuan Y, Wang K, Wang Q 2016 Funct. Mater. Lett. 9 1650003

    [9]

    Jile D C 1994 J. Phys. D: Appl. Phys. 27 1

    [10]

    Zhao Y, Jiang C B, Zhang H, Xu H B 2003 J. Alloy. Compd. 354 263

    [11]

    Palit M, Banumathy S, Singh A K, Pandian S, Chattopadhyay K 2011 Intermetallics 19 357

    [12]

    Bai X B, Jiang C B 2010 J. Rare Earth 28 104

    [13]

    Kang D Z, Liu J H, Jiang C B, Xu H B 2015 J. Alloy. Compd. 621 331

    [14]

    Wu G H, Zhao X G, Wang J H, Li J Y, Jia K C, Zhan W S 1997 Appl. Phys. Lett. 67 2005

    [15]

    Palit M, Arout Chelvane J, Pandian S, Manivel Raja M, Chandrasekaran V 2009 Mater. Charact. 60 40

    [16]

    Meng H, Zhang T L, Jiang C B, Xu H B 2010 Appl. Phys. Lett. 96 102501

    [17]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Magn. Magn. Mater. 174 100

    [18]

    Gao A, Wang Q, Wang C J, Liu T, Zhang C, He J C 2008 Acta Phys. Sin. 57 767 (in Chinese) [高翱, 王强, 王春江, 刘铁, 张超, 赫冀成 2008 物理学报 57 767]

    [19]

    Liu T, Wang Q, Zhang C, Gao A, Li D G, He J C 2009 J. Mater. Res. 24 2321

    [20]

    Liu T, Liu Y, Wang Q, Iwai K, Gao P F, He J C 2013 J. Phys. D: Appl. Phys. 46 125005

    [21]

    Liu Y, Wang Q, Kazuhiko I, Yuan Y, Liu T, He J C 2014 J. Magn. Magn. Mater. 357 18

    [22]

    Rango P D, Lees M R, Lejay P, Sulpice A, Tournier R, Ingold M, Geumi P, Pernet M 1991 Nature 349 770

    [23]

    Wang Q, Liu T, Wang K, Gao P F, Liu Y, He J C 2014 ISIJ Int. 54 516

    [24]

    Yuan Y, Li Y L, Wang Q, Liu T, Gao P F, He J C 2013 Acta Phys. Sin. 62 208106 (in Chinese) [苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成 2013 物理学报 62 208106]

    [25]

    Liu T, Wang Q, Gao P F, Wang K, Wang K, Zhang T A, He J C 2014 IEEE Trans. Magn. 50 2505603

    [26]

    Asai S 2007 ISIJ Int. 47 519

    [27]

    Wu C Y, Li S, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [28]

    Mei W, Toshimisu O, Takateru U 1997 J. Alloy. Compd. 248 132

    [29]

    Arif S K, Bunbury D S P, Bowden G J 1975 J. Phys. F: Met. Phys. 5 1785

    [30]

    Gao P F, Wang Q, Liu T, Liu Y, Niu S X, He J C 2015 IEEE Trans. Magn. 51 2500706

  • [1]

    Clark A E, Belson H 1972 Phys. Rev. B 5 3642

    [2]

    Dhilsha R, Rajeshwari P M, Rajendran V 2005 Def. Sci. J. 55 13

    [3]

    Xu L H, Jiang C B, Xu H B 2006 Appl. Phys. Lett. 89 192507

    [4]

    Zhang C S, Ma T Y, Yan M 2011 Acta Phys. Sin. 60 037505 (in Chinese) [张昌盛, 马天宇, 严密 2011 物理学报 60 037505]

    [5]

    Ren W J, Zhang Z D 2013 Chin. Phys. B 22 077507

    [6]

    Yan B P, Tang Z F, L F Z, Yang K J, Zhang C M, Li L Y 2014 Chin. Phys. B 23 127504

    [7]

    Wang K, Liu T, Gao P F, Wang Q, Liu Y, He J C 2015 Chin. Phys. Lett. 32 37502

    [8]

    Gao P F, Liu T, Dong M, Yuan Y, Wang K, Wang Q 2016 Funct. Mater. Lett. 9 1650003

    [9]

    Jile D C 1994 J. Phys. D: Appl. Phys. 27 1

    [10]

    Zhao Y, Jiang C B, Zhang H, Xu H B 2003 J. Alloy. Compd. 354 263

    [11]

    Palit M, Banumathy S, Singh A K, Pandian S, Chattopadhyay K 2011 Intermetallics 19 357

    [12]

    Bai X B, Jiang C B 2010 J. Rare Earth 28 104

    [13]

    Kang D Z, Liu J H, Jiang C B, Xu H B 2015 J. Alloy. Compd. 621 331

    [14]

    Wu G H, Zhao X G, Wang J H, Li J Y, Jia K C, Zhan W S 1997 Appl. Phys. Lett. 67 2005

    [15]

    Palit M, Arout Chelvane J, Pandian S, Manivel Raja M, Chandrasekaran V 2009 Mater. Charact. 60 40

    [16]

    Meng H, Zhang T L, Jiang C B, Xu H B 2010 Appl. Phys. Lett. 96 102501

    [17]

    Mei W, Umeda T, Zhou S, Wang R 1997 J. Magn. Magn. Mater. 174 100

    [18]

    Gao A, Wang Q, Wang C J, Liu T, Zhang C, He J C 2008 Acta Phys. Sin. 57 767 (in Chinese) [高翱, 王强, 王春江, 刘铁, 张超, 赫冀成 2008 物理学报 57 767]

    [19]

    Liu T, Wang Q, Zhang C, Gao A, Li D G, He J C 2009 J. Mater. Res. 24 2321

    [20]

    Liu T, Liu Y, Wang Q, Iwai K, Gao P F, He J C 2013 J. Phys. D: Appl. Phys. 46 125005

    [21]

    Liu Y, Wang Q, Kazuhiko I, Yuan Y, Liu T, He J C 2014 J. Magn. Magn. Mater. 357 18

    [22]

    Rango P D, Lees M R, Lejay P, Sulpice A, Tournier R, Ingold M, Geumi P, Pernet M 1991 Nature 349 770

    [23]

    Wang Q, Liu T, Wang K, Gao P F, Liu Y, He J C 2014 ISIJ Int. 54 516

    [24]

    Yuan Y, Li Y L, Wang Q, Liu T, Gao P F, He J C 2013 Acta Phys. Sin. 62 208106 (in Chinese) [苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成 2013 物理学报 62 208106]

    [25]

    Liu T, Wang Q, Gao P F, Wang K, Wang K, Zhang T A, He J C 2014 IEEE Trans. Magn. 50 2505603

    [26]

    Asai S 2007 ISIJ Int. 47 519

    [27]

    Wu C Y, Li S, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [28]

    Mei W, Toshimisu O, Takateru U 1997 J. Alloy. Compd. 248 132

    [29]

    Arif S K, Bunbury D S P, Bowden G J 1975 J. Phys. F: Met. Phys. 5 1785

    [30]

    Gao P F, Wang Q, Liu T, Liu Y, Niu S X, He J C 2015 IEEE Trans. Magn. 51 2500706

  • [1] 苏徐昆, 冷永刚, 张雨阳, 范胜波. 单面双极性磁铁空间磁感应强度模型. 物理学报, 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [2] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [3] 邓东阁, 左苏, 武新军. 基于表面磁感应强度的铁磁构件应力恒磁表征方法. 物理学报, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [4] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [5] 边文花, 代富平, 王伟丽, 赵宇龙. 急冷条件下NiAl-Mo三元共晶合金的组织形成机制. 物理学报, 2013, 62(4): 048102. doi: 10.7498/aps.62.048102
    [6] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响. 物理学报, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [7] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究. 物理学报, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [8] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响. 物理学报, 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [9] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响. 物理学报, 2011, 60(9): 093601. doi: 10.7498/aps.60.093601
    [10] 张昌盛, 马天宇, 严密. 离轴磁场退火后Tb0.3Dy0.7Fe1.95〈110〉取向晶体的磁致伸缩"跳跃"效应. 物理学报, 2011, 60(3): 037505. doi: 10.7498/aps.60.037505
    [11] 李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬. Fe81Ga19合金晶体生长取向与磁致伸缩性能. 物理学报, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [12] 郑小平, 张佩峰, 李发伸, 郝远. Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95合金的磁性、磁致伸缩和穆斯堡尔谱研究. 物理学报, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [13] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [14] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [15] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [16] 汪 渊, 宋忠孝, 徐可为. 体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射. 物理学报, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [17] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [18] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7(Fe0.9T0.1)1.95合金的结构、自旋重取向和穆斯堡尔谱. 物理学报, 2006, 55(2): 879-883. doi: 10.7498/aps.55.879
    [19] 郑小平, 张佩峰, 范多旺, 李发伸, 成昭华, 沈保根. Tb0.3Dy0.7(Fe1-xAlx)1.95合金的自旋重取向和穆斯堡尔. 物理学报, 2005, 54(2): 944-948. doi: 10.7498/aps.54.944
    [20] 郑小平, 薛德胜, 李发伸, 成昭华, 吴光恒, 沈保根. Tb0.3Dy0.7(Fe1-xAlx)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2002, 51(4): 922-927. doi: 10.7498/aps.51.922
计量
  • 文章访问数:  2861
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-18
  • 修回日期:  2015-10-22
  • 刊出日期:  2016-02-05

磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819
  • 通信作者: 刘铁, liutie@epm.neu.edu.cn
    基金项目: 国家自然科学基金(批准号: 51425401, 51574073, 51174056)和中央高校基本科研业务费(批准号: N140901001, N130302005)资助的课题.

摘要: 实验研究了磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95 合金凝固过程中(Tb, Dy)Fe2相取向行为及合金磁性能的影响. 结果表明, 将强磁场作用于Tb0.27Dy0.73Fe1.95合金的凝固过程可以制备出(Tb, Dy)Fe2相沿111取向的组织, 同时显著提高了合金的磁致伸缩性能; 通过提高磁感应强度可以在更快的冷却速率下得到111取向的组织; 在410 T范围内, 随着冷却速率的增加, (Tb, Dy)Fe2相沿111取向所需的磁感应强度增加, 而发生110取向的磁感应强度减小. 随着冷却速率的增加, 合金的饱和磁化强度增加, 而强磁场的施加对合金饱和磁化强度的变化没有明显影响. (Tb, Dy)Fe2相的取向行为受(Tb, Dy)Fe3相取向行为的影响, 且由磁晶各向异性能与磁场作用时间共同控制.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回