搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁共振的水下非接触式电能传输系统建模与损耗分析

张克涵 阎龙斌 闫争超 文海兵 宋保维

引用本文:
Citation:

基于磁共振的水下非接触式电能传输系统建模与损耗分析

张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维

Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

Zhang Ke-Han, Yan Long-Bin, Yan Zheng-Chao, Wen Hai-Bing, Song Bao-Wei
PDF
导出引用
  • 文章对基于磁共振的水下非接触式电能传输系统在海水中的传输机理以及电涡流损耗进行了分析. 首先基于互感模型, 建立了空气中磁共振非接触式电能传输系统的数学模型, 分析了系统的频率特性, 从理论上对频率分裂现象进行了解释. 然后针对海水环境, 通过麦克斯韦方程组建立系统的数学模型, 通过级数展开, 略去高阶项, 得到计算电涡流损耗的近似公式, 分析了电涡流损耗与线圈半径、谐振频率、传输距离、磁感应强度的关系, 为水下非接触式电能传输系统的总体设计提供了理论依据. 最后通过实验验证了在空气中和海水中进行非接触式电能传输的异同, 以及电涡流损耗与各项参数的关系. 实验表明: 在空气中当传输距离为50 mm、传输功率为100 W时, 效率在80%以上; 在海水中当传输距离为50 mm、传输功率为100 W时, 效率约为67%, 说明基于磁共振的水下非接触式电能传输系统在海水中也有很好的应用前景.
    In this paper, we investigate the transmission mechanism and eddy-current loss of the contact-less power transmission (CPT) system in seawater environment. Contact-less power transfer could be achieved in the three following ways: magnetic coupling, magnetic resonance coupling, and microwave radiation. When the primary and secondary coils are in resonance, a channel of low resistance in the magnetic resonance coupling system is formed. Therefore, it is used for medium-distance power transmission and it has less restrictions on orientation, which means that it has wide applications in many scenarios. Moreover, contact-less power transfer is safer and more concealed than traditional plug power supply, especially in underwater vehicles. Firstly, the mathematical model based on the mutual inductance model is proposed for the CPT system in the air, then the frequency analysis of the CPT model as well as theoretical explanation of the splitting phenomenon is conducted, after that we consider the seawater effect on the mutual inductance coefficient. Secondly, we build a mathematical model of the eddy-current loss in seawater circumstance according to the Maxwell's equations, where we introduce an average magnetic induction in cross section, then derive an approximate formula through Taylor expansion, and analyze the relations between eddy-current loss and the physical parameters including coil radius, resonance frequency, transmission distance, and magnetic induction. According to the theoretical results, we optimize these physical parameters and then design a 754 kHz CPT system, thereafter we validate the CPT system both in the air and in seawater and find the difference between these two circumstances, and verify the relations between eddy-current loss and the physical parameters which are proposed in our theory. It can be learned from the experiment that when transmission distance is 50 mm and transmission power is 100 W in the air, the transmission efficiency is over 80%, and when transmission distance is 50 mm and transmission power is 100 W in seawater, the transmission efficiency is over 67%. Apparently, our magnetic-resonance-coupling-based CPT system has potentials serving as an underwater vehicle.
      Corresponding author: Zhang Ke-Han, zhangkehan210@163.com
    [1]

    Ho Y L, McCormick D, Budgett D, Hu A P 2013 IEEE International Symposium on Circuits and Systems Beijing, China, May 19-23, 2013 p2787

    [2]

    Sibue J R, Meunier G, Ferrieux J P, Roudet J, Periot R 2013 IEEE Trans. Magn. 49 586

    [3]

    Ping S 2008 Ph. D. Dissertation (Auckland: The University of Auckland)

    [4]

    Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851

    [5]

    Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24-26, 2006 p466

    [6]

    Dehennis A D, Wise K D 2005 J. Microelectromech. Syst. 14 12

    [7]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [8]

    Teck C B, Kato M, Imura T, Sehoon O, Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689

    [9]

    Juseop L, Lim Y S, Yang W J, Lim S O 2014 IEEE Trans. Antennas Propag. 62 889

    [10]

    Lim Y, Tang H, Lim S, Park J 2014 IEEE Trans. Power Electron. 29 4403

    [11]

    Fukuda H, Kobayashi N, Shizuno K, Yoshida S, Tanomura M, Hama Y 2013 IEEE International Underwater Technology Symposium Tokyo, Japan March 5-8, 2013 p1

    [12]

    Shizuno K, Yoshida S, Tanomura M, Hama Y 2014 IEEE Oceans Newfoundland Labrador, Canada, September 14-19, 2014 p1

    [13]

    Itoh R, Sawahara Y, Ishizaki T, Awai I 2014 IEEE 3rd Global Conference on Consumer Electronics Tokyo, Japan October 7-10, 2014 p459

    [14]

    Zhou J, Li D J, Chen Y 2013 J. Ocean Eng. 60 175

    [15]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [16]

    Li Y, Li Z, Shen Y, Ren M 2011 Third International Conference on Measuring Technology and Mechatronics Automation Shanghai, China, Jan. 6-7, 2011 p490

    [17]

    Zhu Q W, Wang L F, Liao C L, Guo Y J 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific Beijing, China, August 31-September 3, 2014 p1

    [18]

    Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China, October 22-26, 2006 p794

    [19]

    Sun Y, Xia C Y, Zhao Z B, Zhai Y, Yang F X 2011 Adv. Technol. Electr. Eng. Energy 30 9 (in Chinese) [孙跃, 夏晨阳, 赵志斌, 翟渊, 杨芳勋 2011 电工电能新技术 30 9]

    [20]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [21]

    Lei Y Z 2000 The Analysis Method of the Time-varying Electromagnetic Field (Beijing: Science Press) p96 (in Chinese) [雷银照 2000 时谐电磁场解析方法 (北京: 科学出版社) 第96页]

    [22]

    Wu J S, Wu C Y, Zhang R G 2014 Eddy Current Technology and Application (Changsha: Central South University Press) p209 (in Chinese) [吴桔生, 吴承燕, 张荣刚 2014 电涡流技术与应用 (长沙: 中南大学出版社) 第209页]

    [23]

    Yan J C 2013 The Theory of Electromagnetic (Hefei: Universityof Science and Technology of China) p304 (in Chinese) [严济慈 2013 电磁学 (合肥: 中国科技大学出版社) 第304页]

    [24]

    Li Y 2012 Ph. D. Dissertation (Hebei: Hebei University of Technology) (in Chinese) [李阳 2012 博士学位论文(河北: 河北工业大学)]

  • [1]

    Ho Y L, McCormick D, Budgett D, Hu A P 2013 IEEE International Symposium on Circuits and Systems Beijing, China, May 19-23, 2013 p2787

    [2]

    Sibue J R, Meunier G, Ferrieux J P, Roudet J, Periot R 2013 IEEE Trans. Magn. 49 586

    [3]

    Ping S 2008 Ph. D. Dissertation (Auckland: The University of Auckland)

    [4]

    Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851

    [5]

    Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24-26, 2006 p466

    [6]

    Dehennis A D, Wise K D 2005 J. Microelectromech. Syst. 14 12

    [7]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [8]

    Teck C B, Kato M, Imura T, Sehoon O, Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689

    [9]

    Juseop L, Lim Y S, Yang W J, Lim S O 2014 IEEE Trans. Antennas Propag. 62 889

    [10]

    Lim Y, Tang H, Lim S, Park J 2014 IEEE Trans. Power Electron. 29 4403

    [11]

    Fukuda H, Kobayashi N, Shizuno K, Yoshida S, Tanomura M, Hama Y 2013 IEEE International Underwater Technology Symposium Tokyo, Japan March 5-8, 2013 p1

    [12]

    Shizuno K, Yoshida S, Tanomura M, Hama Y 2014 IEEE Oceans Newfoundland Labrador, Canada, September 14-19, 2014 p1

    [13]

    Itoh R, Sawahara Y, Ishizaki T, Awai I 2014 IEEE 3rd Global Conference on Consumer Electronics Tokyo, Japan October 7-10, 2014 p459

    [14]

    Zhou J, Li D J, Chen Y 2013 J. Ocean Eng. 60 175

    [15]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [16]

    Li Y, Li Z, Shen Y, Ren M 2011 Third International Conference on Measuring Technology and Mechatronics Automation Shanghai, China, Jan. 6-7, 2011 p490

    [17]

    Zhu Q W, Wang L F, Liao C L, Guo Y J 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific Beijing, China, August 31-September 3, 2014 p1

    [18]

    Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China, October 22-26, 2006 p794

    [19]

    Sun Y, Xia C Y, Zhao Z B, Zhai Y, Yang F X 2011 Adv. Technol. Electr. Eng. Energy 30 9 (in Chinese) [孙跃, 夏晨阳, 赵志斌, 翟渊, 杨芳勋 2011 电工电能新技术 30 9]

    [20]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [21]

    Lei Y Z 2000 The Analysis Method of the Time-varying Electromagnetic Field (Beijing: Science Press) p96 (in Chinese) [雷银照 2000 时谐电磁场解析方法 (北京: 科学出版社) 第96页]

    [22]

    Wu J S, Wu C Y, Zhang R G 2014 Eddy Current Technology and Application (Changsha: Central South University Press) p209 (in Chinese) [吴桔生, 吴承燕, 张荣刚 2014 电涡流技术与应用 (长沙: 中南大学出版社) 第209页]

    [23]

    Yan J C 2013 The Theory of Electromagnetic (Hefei: Universityof Science and Technology of China) p304 (in Chinese) [严济慈 2013 电磁学 (合肥: 中国科技大学出版社) 第304页]

    [24]

    Li Y 2012 Ph. D. Dissertation (Hebei: Hebei University of Technology) (in Chinese) [李阳 2012 博士学位论文(河北: 河北工业大学)]

  • [1] 徐旭, 马文凯, 姚文娟. 耳蜗中tip-link张力与静纤毛运动动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211105
    [2] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为 的多尺度熵模型研究. 物理学报, 2020, (): 008700. doi: 10.7498/aps.69.20200051
    [3] 张夫一, 葛曼玲, 郭志彤, 谢冲, 杨泽坤, 宋子博. 静息态功能磁共振成像评估健康老年人认知行为的多尺度熵模型研究. 物理学报, 2020, 69(10): 108703. doi: 10.7498/aps.69.20200050
    [4] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [5] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响. 物理学报, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [6] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [7] 李少波, 殷春浩, 徐振坤, 李佩欣, 吴彩平, 冯铭扬. 基于电子顺磁共振的锶铁氧体磁特性研究. 物理学报, 2015, 64(10): 107502. doi: 10.7498/aps.64.107502
    [8] 宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌. SOI SiGe HBT结构设计及频率特性研究. 物理学报, 2014, 63(11): 118501. doi: 10.7498/aps.63.118501
    [9] 刘丽想, 董丽娟, 刘艳红, 杨成全, 石云龙. 含特异材料的光量子阱频率特性研究. 物理学报, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [10] 吴永晟, 王兵. (BEDT-TTF)[FeBr4]晶体的制备及其物理性质的研究. 物理学报, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104
    [11] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究. 物理学报, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [12] 王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林. Al-O,C元素添加对FeCo合金薄膜磁性和频率特性的影响. 物理学报, 2011, 60(1): 017505. doi: 10.7498/aps.60.017505
    [13] 汪红志, 蔡筱云, 王鹤, 黄清明, 陈奇特, 俞捷, 王晓琰, 陆伦, 黄勇, 程红岩, 张学龙, 李鲠颖. 基于双带宽高斯滤波器的磁共振弹性图局域频率估算算法研究与实现. 物理学报, 2011, 60(9): 090204. doi: 10.7498/aps.60.090204
    [14] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [15] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [16] 张晓明, 彭建华, 张入元. 非线性自治系统频率特性及其利用. 物理学报, 2002, 51(11): 2467-2474. doi: 10.7498/aps.51.2467
    [17] 李印峰, 陈笃行, 郭慧群, M. Vazquez, A. Hernando. 铁基非晶丝样低频涡流损耗分析. 物理学报, 2000, 49(8): 1591-1594. doi: 10.7498/aps.49.1591
    [18] 邵倩芬, 陈健, 吴泰琉, 蔡瑞芳, 黄祖恩. [二苯并-18-冠(醚)-6]KC60奇异特性的核磁共振研究. 物理学报, 1997, 46(5): 981-985. doi: 10.7498/aps.46.981
    [19] 王嘉赋, 刘锋, 王均义, 陈光, 王炜. 随机共振系统输入阈值的频率特性. 物理学报, 1997, 46(12): 2305-2312. doi: 10.7498/aps.46.2305
    [20] 理论物理专业1972级教育革命小分队, (试验厂)三车间科研组. 交直流叠加磁化下恒导磁薄片的反常涡流损耗. 物理学报, 1976, 25(2): 105-114. doi: 10.7498/aps.25.105
计量
  • 文章访问数:  3090
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-11
  • 修回日期:  2015-12-14
  • 刊出日期:  2016-02-05

基于磁共振的水下非接触式电能传输系统建模与损耗分析

摘要: 文章对基于磁共振的水下非接触式电能传输系统在海水中的传输机理以及电涡流损耗进行了分析. 首先基于互感模型, 建立了空气中磁共振非接触式电能传输系统的数学模型, 分析了系统的频率特性, 从理论上对频率分裂现象进行了解释. 然后针对海水环境, 通过麦克斯韦方程组建立系统的数学模型, 通过级数展开, 略去高阶项, 得到计算电涡流损耗的近似公式, 分析了电涡流损耗与线圈半径、谐振频率、传输距离、磁感应强度的关系, 为水下非接触式电能传输系统的总体设计提供了理论依据. 最后通过实验验证了在空气中和海水中进行非接触式电能传输的异同, 以及电涡流损耗与各项参数的关系. 实验表明: 在空气中当传输距离为50 mm、传输功率为100 W时, 效率在80%以上; 在海水中当传输距离为50 mm、传输功率为100 W时, 效率约为67%, 说明基于磁共振的水下非接触式电能传输系统在海水中也有很好的应用前景.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回