搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂质离子对有机共轭聚合物中极化子动力学性质的影响

刘俊娟 魏增江 常虹 张亚琳 邸冰

引用本文:
Citation:

杂质离子对有机共轭聚合物中极化子动力学性质的影响

刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰

Dynamics of polarons in organic conjugated polymers with impurity ions

Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing
PDF
导出引用
  • 基于一维紧束缚Su-Schrieffer-Heeger模型, 采用分子动力学方法, 讨论了杂质势的强度和杂质之间的距离对电子和空穴极化子动力学性质的影响. 研究结果表明: 1)当杂质势强度保持不变时, 两杂质离子之间的距离(d)在2-16个晶格常数变化时, 电子极化子的平均速度大于空穴极化子的平均速度, 这是由于电子、空穴极化子与杂质势的库仑作用不同而产生的差异, 同时极化子的平均速度随d的增加而增大; 若继续增加杂质离子之间的距离, 电子和空穴极化子的平均速度几乎保持不变, 仅有一些微小的振荡, 这是由于不同距离的杂质离子对电子和空穴极化子产生的势垒或势阱的叠加效果不同而引起的; 2)保持两杂质离子之间的距离不变时, 随着杂质势强度的增大, 电子和空穴极化子的平均速度均减小, 且空穴极化子的平均速度减小趋势更明显.
    Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons under the influence of impurity potentials and the distance between impurities. Under an external electric field, the electron or hole polaron can move along the polymer chain with a steady velocity. When the polarons collide with impurities, the velocities of the polarons would be affected by the impurity potentials and the distance between the impurities. 1) Firstly, at a fixed impurity potential strength, the average velocities of the electron and hole polarons as a function of the distance (2-16 times the lattice constant) between impurities have been discussed in polymers. It is found that the average velocities of the electron and hole polarons increase with increasing distance between impurities. It is worth noting that the average velocities of the electron polarons are greater than those of the hole polarons, which results from the fact that the electron and hole polarons have different coulomb interactions with the impurity ions. That is to say, the coulomb repulsion is shown between the electron polarons and impurity ions, which is similar to the potential barriers; while the coulomb attraction appears between the hole polaron and impurity ions, which is similar to a potential well. However, as the distance between the impurity ions becomes large enough, the average speeds of the electron and hole polarons almost remain the same, and show just a few small oscillation. This is due to the different distances between impurity ions which generate the different superposition effects of barrier or potential well on the electron and hole polarons. 2) Next, with a fixed distance between the two impurity ions, we find that with the increase of impurity potential strength, the average velocities of the electron and hole polarons decrease. And the decrease of the average speed of the hole polaron is more obvious. It can be explained as follows: the coulomb attraction interactions between the hole polaron and impurity ions can obviously enhance the localization of the hole polaron. While the coulomb repulsion interactions between electron polaron and impurity ions can only make the electron polaron undergo a small shift in the polymer chain, so that the localization of it is almost unchanged. In view of the average speed of the polaron being closely related to the localization of the polaron, the change of the average speed of the hole polaron is more obvious. The results above may provide some theoretical basis for understanding the conduction properties in doped polymers.
      通信作者: 邸冰, dibing@mail.hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11074064)、河北省自然科学基金(批准号: A2016205271)和河北省教育厅基金(批准号: ZD2014052, Z2014034)资助的课题.
      Corresponding author: Di Bing, dibing@mail.hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074064), the Natural Science Fund of Hebei Province of China (Grant No. A2016205271) and the Educational Commission of Hebei Province of China (Grant Nos. ZD2014052, Z2014034).
    [1]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [2]

    Zhu Y X, Chen Z H, Yang Y, Cai P, Chen J W, Li Y Y, Yang W, Peng J B, Cao Y 2015 Org. Electron. 23 193

    [3]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [4]

    Sun Y, Yan Y D, Hu Z J, Zhao X S, Yan J C 2012 Nat. Mat. 47 44

    [5]

    Braga D, Erickson N C, Renn M J, Holmes R J, Frisbie C D 2012 Adv. Func. Mat. 22 1623

    [6]

    Sun X 1990 The Soliton And Polaron In High Polymers (Chengdu: Sichuan Education press) p135 (in Chinese) [孙鑫 1990 高聚物中的孤子和极化子(成都: 四川教育出版社) 第135页]

    [7]

    Liu W, Zhang M H, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 037102

    [8]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 物理学报 59 3461]

    [9]

    Zhao H X, Zhao H, Chen Y G, Yan Y H 2015 Chin. Phys. Lett. 32 047201

    [10]

    Di B, Wang Y D, Zhang Y L 2013 Acta Phys. Sin. 62 107202 (in Chinese) [邸冰, 王亚东, 张亚琳 2013 物理学报 62 107202]

    [11]

    Yang F J, Xie S J 2014 Chin. Phys. B 23 097306

    [12]

    Yan Y H, An Z, Wu C Q 2004 Eur. Phys. J. B 42 157

    [13]

    Lima M P, e Silva G M 2005 Braz. J. Phys. 35 961

    [14]

    Lima M P, e Silva G M 2006 Int. J. Quantum Chem. 106 2597

    [15]

    da Cunha W F, Ribeiro Junior L A, de Almeida Fonseca A L, Gargano R, e Silva G M 2015 Carbon 91 171

    [16]

    Ribeiro Junior L A, da Cunha W F, de Oliveira Neto P H, Gargano R, e Silva G M 2013 J. Chem. Phys. 139 174903

    [17]

    Li D M, Yuan X J, Ma J S, Liu D S 2011 Chin. Phys. B 20 117203

    [18]

    Wang Y D, Meng Y, Di B, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [19]

    Di B, Wang Y D, Zhang Y L, An Z 2013 Chin. Phys. B 22 067103

    [20]

    An Z, Li Z J, Liu Y, Li Y C 1997 Z. Phys. B 103 61

    [21]

    Zhang X J, Li G Q, Sun X 2002 Acta Phys. Sin. 51 134 (in Chinese) [张锡娟, 李广起, 孙鑫 2002 物理学报 51 134]

    [22]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

  • [1]

    Heeger A J 2001 Rev. Mod. Phys. 73 681

    [2]

    Zhu Y X, Chen Z H, Yang Y, Cai P, Chen J W, Li Y Y, Yang W, Peng J B, Cao Y 2015 Org. Electron. 23 193

    [3]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724

    [4]

    Sun Y, Yan Y D, Hu Z J, Zhao X S, Yan J C 2012 Nat. Mat. 47 44

    [5]

    Braga D, Erickson N C, Renn M J, Holmes R J, Frisbie C D 2012 Adv. Func. Mat. 22 1623

    [6]

    Sun X 1990 The Soliton And Polaron In High Polymers (Chengdu: Sichuan Education press) p135 (in Chinese) [孙鑫 1990 高聚物中的孤子和极化子(成都: 四川教育出版社) 第135页]

    [7]

    Liu W, Zhang M H, Li H H, Wang Y J, Liu D S 2011 Chin. Phys. B 20 037102

    [8]

    Song R, Liu X J, Wang Y D, Di B, An Z 2010 Acta Phys. Sin. 59 3461 (in Chinese) [宋瑞, 刘晓静, 王亚东, 邸冰, 安忠 2010 物理学报 59 3461]

    [9]

    Zhao H X, Zhao H, Chen Y G, Yan Y H 2015 Chin. Phys. Lett. 32 047201

    [10]

    Di B, Wang Y D, Zhang Y L 2013 Acta Phys. Sin. 62 107202 (in Chinese) [邸冰, 王亚东, 张亚琳 2013 物理学报 62 107202]

    [11]

    Yang F J, Xie S J 2014 Chin. Phys. B 23 097306

    [12]

    Yan Y H, An Z, Wu C Q 2004 Eur. Phys. J. B 42 157

    [13]

    Lima M P, e Silva G M 2005 Braz. J. Phys. 35 961

    [14]

    Lima M P, e Silva G M 2006 Int. J. Quantum Chem. 106 2597

    [15]

    da Cunha W F, Ribeiro Junior L A, de Almeida Fonseca A L, Gargano R, e Silva G M 2015 Carbon 91 171

    [16]

    Ribeiro Junior L A, da Cunha W F, de Oliveira Neto P H, Gargano R, e Silva G M 2013 J. Chem. Phys. 139 174903

    [17]

    Li D M, Yuan X J, Ma J S, Liu D S 2011 Chin. Phys. B 20 117203

    [18]

    Wang Y D, Meng Y, Di B, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [19]

    Di B, Wang Y D, Zhang Y L, An Z 2013 Chin. Phys. B 22 067103

    [20]

    An Z, Li Z J, Liu Y, Li Y C 1997 Z. Phys. B 103 61

    [21]

    Zhang X J, Li G Q, Sun X 2002 Acta Phys. Sin. 51 134 (in Chinese) [张锡娟, 李广起, 孙鑫 2002 物理学报 51 134]

    [22]

    Su W P, Schrieffer J R, Heeger A J 1980 Phys. Rev. B 22 2099

  • [1] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [2] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [3] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [4] 袁晓娟, 袁慧敏, 张成强, 王文静, 于元勋, 刘德胜. 共轭聚合物中均匀无序对极化子输运动力学的影响. 物理学报, 2015, 64(6): 067201. doi: 10.7498/aps.64.067201
    [5] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [6] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究. 物理学报, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [7] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子. 物理学报, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [8] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [9] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [10] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [12] 黄永宪, 吕世雄, 田修波, 杨士勤, Fu Ricky, Chu K Paul, 冷劲松, 李垚. 聚合物物理属性对离子注入效应的影响. 物理学报, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [13] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [14] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [15] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [16] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [17] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [18] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学. 物理学报, 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 魏建华, 解士杰, 梅良模. 混合卤化物中的极化子与双极化子. 物理学报, 2000, 49(11): 2264-2270. doi: 10.7498/aps.49.2264
计量
  • 文章访问数:  3375
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-27
  • 修回日期:  2015-12-28
  • 刊出日期:  2016-03-05

杂质离子对有机共轭聚合物中极化子动力学性质的影响

  • 1. 河北师范大学附属民族学院, 石家庄 050091;
  • 2. 石家庄理工职业学院, 石家庄 050020;
  • 3. 河北师范大学物理科学与信息工程学院, 石家庄 050024
  • 通信作者: 邸冰, dibing@mail.hebtu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11074064)、河北省自然科学基金(批准号: A2016205271)和河北省教育厅基金(批准号: ZD2014052, Z2014034)资助的课题.

摘要: 基于一维紧束缚Su-Schrieffer-Heeger模型, 采用分子动力学方法, 讨论了杂质势的强度和杂质之间的距离对电子和空穴极化子动力学性质的影响. 研究结果表明: 1)当杂质势强度保持不变时, 两杂质离子之间的距离(d)在2-16个晶格常数变化时, 电子极化子的平均速度大于空穴极化子的平均速度, 这是由于电子、空穴极化子与杂质势的库仑作用不同而产生的差异, 同时极化子的平均速度随d的增加而增大; 若继续增加杂质离子之间的距离, 电子和空穴极化子的平均速度几乎保持不变, 仅有一些微小的振荡, 这是由于不同距离的杂质离子对电子和空穴极化子产生的势垒或势阱的叠加效果不同而引起的; 2)保持两杂质离子之间的距离不变时, 随着杂质势强度的增大, 电子和空穴极化子的平均速度均减小, 且空穴极化子的平均速度减小趋势更明显.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回