搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双孔差分闪烁法测量大气湍流的理论与实验研究

程知 谭逢富 靖旭 何枫 侯再红

引用本文:
Citation:

双孔差分闪烁法测量大气湍流的理论与实验研究

程知, 谭逢富, 靖旭, 何枫, 侯再红

Theoretical and experimental study of atmospheric turbulence measurement using two-aperture differential scintillation method

Cheng Zhi, Tan Feng-Fu, Jing Xu, He Feng, Hou Zai-Hong
PDF
导出引用
  • 根据cross-path理论, 推导出弱起伏条件下差分孔径光强起伏结构函数的精确表达式, 以此为依据, 从理论上提出测量大气湍流强度的双孔差分闪烁法. 在Kolmogorov湍流谱条件下, 分析了信标光直径和信标光高度对该方法中路径权重函数的影响. 在近地面开展了2 km路径的水平光单程传输实验, 将双孔差分闪烁法和单孔闪烁法的测量结果进行了对比. 实验结果表明: 在不同的天气条件和大气湍流状况下, 两种方法测量的折射率结构常数具有高度的一致性; 通过对折射率结构常数积分得到的球面波大气相干长度进行相关性分析, 发现两者的线性相关系数达0.96; 由此验证了双孔差分闪烁法的可行性和有效性. 该方法能够分离出主动信标双程传输的后向闪烁信息, 为主动信标准确探测大气湍流提供了一种新方法.
    We report the basic theory and first horizontal results of a method called two-aperture differential scintillation method which is aimed at monitoring the vertical profile of atmospheric optical turbulence strength. The method is based on irradiance fluctuation of active light source, but can extract the optical turbulence information in the single-passage path. In this paper, the theoretical principle of two-aperture differential scintillation method is derived in detail. A concise expression is proposed for irradiance fluctuation structure function with differential aperture in the Rytov approximation under a weak fluctuation regime based on the cross-path theory. The mathematic relationship between irradiance fluctuation structure function and atmospheric optical turbulence strength is then developed. The effects of beacon aperture and beacon altitude on path weighting function of this method are analyzed for Kolmogorov turbulence. In order to test the validity of the new method, the experiments are conducted to compare the two-aperture differential scintillation method and single-aperture scintillation method in atmospheric boundary layer over 2 km horizontal single-passage path. In this arrangement, we employ a differential image motion monitor system to measure differential scintillation. Simultaneously, a large aperture scintillation instrument is placed 5 m away at the same altitude to measure the single-aperture scintillation. It is shown that the results of atmospheric refractive index structure constant deduced from the two methods are in good agreement. The measurements of atmospheric coherence length for spherical wave corresponding to the two methods indicate a linear correction factor (R2) of 0.96, in a slope of 0.98 with an offset of -0.09 cm. Feasibility and effectiveness of two-aperture differential scintillation method are thus verified experimentally. The novel method can separate single-passage scintillation information of active beacon double-passage propagation, thereby providing an accurate technique for measuring the atmospheric turbulence of active beacon.
      通信作者: 谭逢富, fftan@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41405014)资助的课题.
      Corresponding author: Tan Feng-Fu, fftan@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405014).
    [1]

    Wu W M, Ning Y, Ma Y X, Xi F J, Xu X J 2014 Chin. Phys. B 23 099502

    [2]

    Tokovinin A, Bustos E, Berdja A 2010 Mon. Not. R. Astron. Soc. 404 1186

    [3]

    Cai D M, Ti P P, Jia P, Wang D, Liu J X 2015 Acta Phys. Sin. 64 224217 (in Chinese) [蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞 2015 物理学报 64 224217]

    [4]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [5]

    Voyez J, Robert C, Conan J M, Mugnier L M, Samain E, Ziad A 2014 Opt. Express 22 10967

    [6]

    Wilson R W, Butterley T, Sarazin M 2009 Mon. Not. R. Astron. Soc. 399 2129

    [7]

    Arockia Bazil Raj A, Arputha Vijaya Selvi J, Durairaj S 2015 Appl. Opt. 54 802

    [8]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [9]

    Vernin J, Munoz-Tunon C 1994 Astron. Astrophys. 284 311

    [10]

    Avila R, Cuevas S 2009 Opt. Express 17 10926

    [11]

    Butterley T, Wilson R W, Sarazin M 2006 Mon. Not. R. Astron. Soc. 369 835

    [12]

    Masciadri E, Lombardi G, Lascaux F 2014 Mon. Not. R. Astron. Soc. 438 938

    [13]

    Ziad A, Blary F, Borgnino J, Fanteï-Caujolle Y, Aristidi E, Martin F, Lantéri H, Douet R, Bondoux E, Mékarnia D 2013 Astron. Astrophys. 559 L6

    [14]

    Jing X, Hou Z H, Wu Y, Qin L A, He F, Tan F F 2013 Opt. Lett. 38 3445

    [15]

    Gimmestad G, Roberts D, Stewart J, Wood J 2012 Opt. Eng. 51 101713

    [16]

    Belen'kii M S, Gimmestad G G 1994 Proc. SPIE. 2222 628

    [17]

    Cui C L, Huang H H, Mei H P, Zhu W Y, Rao R Z 2013 High Power Laser Part Beams 25 1091 (in Chinese) [崔朝龙, 黄宏华, 梅海平, 朱文越, 饶瑞中 2013 强激光与粒子束 25 1091]

    [18]

    Beland R R, Krause-Polstorff J 1991 Lidar Measurement of Optical Turbulence: Theory of the Crossed Path Technique (Phillips Lab Hanscom Afb Ma) Technical report No. PL-TR-91-2139

    [19]

    Wang T, Clifford S F, Ochs G R 1974 Appl. Opt. 13 2602

    [20]

    Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099

    [21]

    Jing X, Hou Z H, Qin L A, He F, Wu Y 2011 Infrared Laser Eng. 40 1352 (in Chinese) [靖旭, 侯再红, 秦来安, 何峰, 吴毅 2011 红外与激光工程 40 1352]

  • [1]

    Wu W M, Ning Y, Ma Y X, Xi F J, Xu X J 2014 Chin. Phys. B 23 099502

    [2]

    Tokovinin A, Bustos E, Berdja A 2010 Mon. Not. R. Astron. Soc. 404 1186

    [3]

    Cai D M, Ti P P, Jia P, Wang D, Liu J X 2015 Acta Phys. Sin. 64 224217 (in Chinese) [蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞 2015 物理学报 64 224217]

    [4]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [5]

    Voyez J, Robert C, Conan J M, Mugnier L M, Samain E, Ziad A 2014 Opt. Express 22 10967

    [6]

    Wilson R W, Butterley T, Sarazin M 2009 Mon. Not. R. Astron. Soc. 399 2129

    [7]

    Arockia Bazil Raj A, Arputha Vijaya Selvi J, Durairaj S 2015 Appl. Opt. 54 802

    [8]

    Qian X M, Zhu W Y, Rao R Z 2015 Chin. Phys. B 24 044201

    [9]

    Vernin J, Munoz-Tunon C 1994 Astron. Astrophys. 284 311

    [10]

    Avila R, Cuevas S 2009 Opt. Express 17 10926

    [11]

    Butterley T, Wilson R W, Sarazin M 2006 Mon. Not. R. Astron. Soc. 369 835

    [12]

    Masciadri E, Lombardi G, Lascaux F 2014 Mon. Not. R. Astron. Soc. 438 938

    [13]

    Ziad A, Blary F, Borgnino J, Fanteï-Caujolle Y, Aristidi E, Martin F, Lantéri H, Douet R, Bondoux E, Mékarnia D 2013 Astron. Astrophys. 559 L6

    [14]

    Jing X, Hou Z H, Wu Y, Qin L A, He F, Tan F F 2013 Opt. Lett. 38 3445

    [15]

    Gimmestad G, Roberts D, Stewart J, Wood J 2012 Opt. Eng. 51 101713

    [16]

    Belen'kii M S, Gimmestad G G 1994 Proc. SPIE. 2222 628

    [17]

    Cui C L, Huang H H, Mei H P, Zhu W Y, Rao R Z 2013 High Power Laser Part Beams 25 1091 (in Chinese) [崔朝龙, 黄宏华, 梅海平, 朱文越, 饶瑞中 2013 强激光与粒子束 25 1091]

    [18]

    Beland R R, Krause-Polstorff J 1991 Lidar Measurement of Optical Turbulence: Theory of the Crossed Path Technique (Phillips Lab Hanscom Afb Ma) Technical report No. PL-TR-91-2139

    [19]

    Wang T, Clifford S F, Ochs G R 1974 Appl. Opt. 13 2602

    [20]

    Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099

    [21]

    Jing X, Hou Z H, Qin L A, He F, Wu Y 2011 Infrared Laser Eng. 40 1352 (in Chinese) [靖旭, 侯再红, 秦来安, 何峰, 吴毅 2011 红外与激光工程 40 1352]

  • [1] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析. 物理学报, 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [2] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [3] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [4] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [5] 彭哲, 靖旭, 侯再红, 吴毅. 梯度倾斜相关测量水平Cn2和横向风速廓线的理论与仿真研究. 物理学报, 2017, 66(10): 104207. doi: 10.7498/aps.66.104207
    [6] 陈永彬, 李少东, 杨军, 曹芙蓉. 旋翼叶片回波建模与闪烁现象机理分析. 物理学报, 2016, 65(13): 138401. doi: 10.7498/aps.65.138401
    [7] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [8] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [9] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [11] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 唐洁, 傅明星, 吴学兵. 基于结构函数方法的类星体证认. 物理学报, 2012, 61(21): 219501. doi: 10.7498/aps.61.219501
    [15] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [16] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [17] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [18] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [19] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  5538
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-05
  • 修回日期:  2015-12-22
  • 刊出日期:  2016-04-05

/

返回文章
返回