搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态Ti-Al合金的深过冷与快速枝晶生长

魏绍楼 黄陆军 常健 杨尚京 耿林

引用本文:
Citation:

液态Ti-Al合金的深过冷与快速枝晶生长

魏绍楼, 黄陆军, 常健, 杨尚京, 耿林

Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy

Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin
PDF
导出引用
  • 采用电磁悬浮和自由落体两种试验技术研究了液态Ti-25 wt.%Al合金的亚稳过冷能力、晶体形核机制和枝晶生长过程. 试验发现, 即使电磁悬浮无容器状态下仍难以消除润湿角 60的异质晶核, 合金熔体过冷度可达210 K (0.11TL). -Ti相形核的热力学驱动力随过冷度近似以线性方式增大, 其枝晶生长速度高达11.2 m/s, 从而在慢速冷却条件下实现了快速凝固. 理论计算表明, 随着过冷度的逐步增大, 相枝晶生长从溶质扩散控制转变为热扩散控制. 当过冷度超过100 K时, 非平衡溶质截留效应可使合金熔体发生无偏析凝固. 然而, 单靠深过冷状态不足以抑制相的后续固态相变. 对于落管中快速凝固的直径77-1048 m合金液滴, 其冷却速率最高达1.05105 K/s, 深过冷与快速冷却的耦合作用能更有效地调控凝固组织形成过程.
    It is highly desirable to undercool titanium based alloy melts and modulate their dendritic solidification process due to the relevant applications in aerospace engineering. But the serious chemical reactivities of this category of alloys result in potent heterogeneous nucleation and suppress remarkable undercoolings in the course of normal material processing. This paper shows that such a challenge can be solved by containerless processing approach. Liquid Ti-25 wt.%Al alloy is highly undercooled and rapidly solidified under containerless state by both electromagnetic levitation and drop tube techniques. Its metastable undecoolability, crystal nucleation mechanism and dendrite growth process are examined experimentally and analyzed theoretically. Those heterogeneous nuclei with wetting angles above 60 are found to be quite difficult to eliminate even during levitation processing, thus reducing the undercoolability of this alloy. The maximum undercooling of bulk alloy melt reaches 210 K (0.11 TL). The thermodynamic driving force to initiate the nucleation of -Ti phase increases almost linearly with the enhancement of undercooling. The phase dendrite displays a growth velocity up to 11.2 m/s, indicating that the rapid solidification is realized at the relatively slow cooling rate of levitated alloy melt. With the increase of undercooling, phase dendrite experiences a kinetic transition from solute diffusion controlled to thermal diffusion controlled growth. Once undercooling exceeds 100 K, the nonequilibrium solute trapping effect brings about the practically desirable segregationless solidification. Nevertheless, the single condition of substantial undercooling is insufficient to suppress the solid state transformation of phase. It is decomposed into 2-Ti3Al phase plus a small amount of -TiAl compound after containerless solidification at levitated state. A more efficient approach to controlling and modulating the solidification microstructures is to utilize the coupled effects of high undercooling and rapid quenching, which proves to be feasible through the rapid solidification of alloy droplets inside drop tube. For those alloy droplets with diameters ranging from 77 to 1048 m, their cooling rates attain a maximum of 1.05105 K/s, and the predicted maximum undercooling is 227-778 K. In this case, phase dendrites are well refined and kept in a metastable state until ambient temperature. The heat transfer calculations indicate that the thermal radiation is the dominant cooling mechanism for the large alloy droplets above 690 m, whereas thermal convection becomes the major cooling mechanism for the small alloy droplets below 690 m. The microgravity condition during free falling does not show apparent effect on the microstructural formation of these alloy droplets.
      通信作者: 黄陆军, huanglujun@hit.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51471063, 51271064, 51401167)资助的课题.
      Corresponding author: Huang Lu-Jun, huanglujun@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471063, 51271064, 51401167).
    [1]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902

    [2]

    Wang N, Wei B 2002 Appl. Phys. Lett. 80 3515

    [3]

    Hartmann H, Galenko P K, Holland-Moritz D, Kolbe M, Herlach D M 2008 J. Appl. Phys. 103 073509

    [4]

    Huang Q S, Liu L, Wei X X, Li J F 2012 Acta Phys. Sin. 61 166401 (in Chinese) [黄起森, 刘礼, 韦修勋, 李金富 2012 物理学报 61 166401]

    [5]

    Liu Y C, Lin X, Guo X F, Yang G C, Zhou Y H 2000 J. Cryst. Growth 217 211

    [6]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (Switzerland: Trans. Tech. Publications Ltd) pp22-23

    [7]

    Spaepen F, Meyer R B 1976 Scr. Metall. 10 257

    [8]

    Jackson K A 2004 J. Cryst. Growth 264 519

    [9]

    Anderson C D, Hofmeister W H, Bayuzick R J 1992 Metall. Trans. A 23 2699

    [10]

    Shuleshora O, Woodcock T G, Lindenkreuz H G, Hermann R, Loeser W, Buechner B 2007 Acta Mater. 55 681

    [11]

    Hu L, Li L H, Yang S J, Wei B 2015 Chem. Phys. Lett. 621 91

    [12]

    McDaniel J G, Holt R G 2000 Phys. Rev. E 61 R2204

    [13]

    Kidkhunthod P, Skinner L B, Barnes A C, Klystun W, Fisher H 2014 Phys. Rev. B 90 094206

    [14]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Mondal K, Kumar A, Gupta G, Murty B S 2009 Acta Mater. 57 3422

    [16]

    Liu L X, Hou Z Y, Liu R S 2012 Acta Phys. Sin. 61 056101 (in Chinese) [刘丽霞, 侯兆阳, 刘让苏 2012 物理学报 61 056101]

    [17]

    Clopet C R, Cochrame R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [18]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [19]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [20]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [21]

    Boettinger W J, Coriell S R, Trevidi R 1987 in: Mehrabian R (Eds), Proceedings of the Fourth International Conference on Rapid Solidification Processing, Principles and Technologies Claitors, Baton Rouge 13-20

    [22]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 188102 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 188102]

    [23]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [24]

    Zghal S, Thomas M, Naka S, Finel A, Coret A 2005 Acta Mater. 53 2653

    [25]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志华, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [26]

    Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, Kaloshkin S D 2014 J. Alloys Compd. 586 S180

    [27]

    Wang H, Wariken N, Reed R C 2010 Mater. Sci. Eng. A 528 622

    [28]

    Fan J L, Li X Z, Su Y Q, Guo J J, Fu H Z 2010 J. Alloys Compd. 504 60

    [29]

    Zhou K, Wang H P, Wei B 2012 Chem. Phys. Lett. 521 52

    [30]

    Masslaski T B 1986 Binary Alloy Diagrams ASM, Metals Park, Ohio 175

    [31]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [32]

    Dubey K S, Ramachandrarao 1984 Acta Metall. 32 91

    [33]

    Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (8th Ed) (Elsevier Publishers Ltd) p14-1

    [34]

    Wu K 2011 Transport Principles of Metallurgical Processes (Beijing: Metallurgical Industry Press) 169-178 (in Chinese) [吴铿 2011 冶金传输原理 (北京: 冶金工业出版社) 第167-178页]

  • [1]

    Brillo J, Pommrich A I, Meyer A 2011 Phys. Rev. Lett. 107 165902

    [2]

    Wang N, Wei B 2002 Appl. Phys. Lett. 80 3515

    [3]

    Hartmann H, Galenko P K, Holland-Moritz D, Kolbe M, Herlach D M 2008 J. Appl. Phys. 103 073509

    [4]

    Huang Q S, Liu L, Wei X X, Li J F 2012 Acta Phys. Sin. 61 166401 (in Chinese) [黄起森, 刘礼, 韦修勋, 李金富 2012 物理学报 61 166401]

    [5]

    Liu Y C, Lin X, Guo X F, Yang G C, Zhou Y H 2000 J. Cryst. Growth 217 211

    [6]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (Switzerland: Trans. Tech. Publications Ltd) pp22-23

    [7]

    Spaepen F, Meyer R B 1976 Scr. Metall. 10 257

    [8]

    Jackson K A 2004 J. Cryst. Growth 264 519

    [9]

    Anderson C D, Hofmeister W H, Bayuzick R J 1992 Metall. Trans. A 23 2699

    [10]

    Shuleshora O, Woodcock T G, Lindenkreuz H G, Hermann R, Loeser W, Buechner B 2007 Acta Mater. 55 681

    [11]

    Hu L, Li L H, Yang S J, Wei B 2015 Chem. Phys. Lett. 621 91

    [12]

    McDaniel J G, Holt R G 2000 Phys. Rev. E 61 R2204

    [13]

    Kidkhunthod P, Skinner L B, Barnes A C, Klystun W, Fisher H 2014 Phys. Rev. B 90 094206

    [14]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 物理学报 64 056401]

    [15]

    Mondal K, Kumar A, Gupta G, Murty B S 2009 Acta Mater. 57 3422

    [16]

    Liu L X, Hou Z Y, Liu R S 2012 Acta Phys. Sin. 61 056101 (in Chinese) [刘丽霞, 侯兆阳, 刘让苏 2012 物理学报 61 056101]

    [17]

    Clopet C R, Cochrame R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [18]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [19]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [20]

    Aziz M J 1982 J. Appl. Phys. 53 1158

    [21]

    Boettinger W J, Coriell S R, Trevidi R 1987 in: Mehrabian R (Eds), Proceedings of the Fourth International Conference on Rapid Solidification Processing, Principles and Technologies Claitors, Baton Rouge 13-20

    [22]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 188102 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 188102]

    [23]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [24]

    Zghal S, Thomas M, Naka S, Finel A, Coret A 2005 Acta Mater. 53 2653

    [25]

    Liu Z G, Chai L H, Chen Y Y, Kong F T 2008 Acta Metall. Sin. 44 569 (in Chinese) [刘志华, 柴丽华, 陈玉勇, 孔凡涛 2008 金属学报 44 569]

    [26]

    Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, Kaloshkin S D 2014 J. Alloys Compd. 586 S180

    [27]

    Wang H, Wariken N, Reed R C 2010 Mater. Sci. Eng. A 528 622

    [28]

    Fan J L, Li X Z, Su Y Q, Guo J J, Fu H Z 2010 J. Alloys Compd. 504 60

    [29]

    Zhou K, Wang H P, Wei B 2012 Chem. Phys. Lett. 521 52

    [30]

    Masslaski T B 1986 Binary Alloy Diagrams ASM, Metals Park, Ohio 175

    [31]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [32]

    Dubey K S, Ramachandrarao 1984 Acta Metall. 32 91

    [33]

    Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (8th Ed) (Elsevier Publishers Ltd) p14-1

    [34]

    Wu K 2011 Transport Principles of Metallurgical Processes (Beijing: Metallurgical Industry Press) 169-178 (in Chinese) [吴铿 2011 冶金传输原理 (北京: 冶金工业出版社) 第167-178页]

  • [1] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [2] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [3] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [4] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [5] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [6] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [7] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [8] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [9] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [10] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [11] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [12] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [18] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [20] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
计量
  • 文章访问数:  4109
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 修回日期:  2016-02-01
  • 刊出日期:  2016-05-05

液态Ti-Al合金的深过冷与快速枝晶生长

  • 1. 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001;
  • 2. 西北工业大学理学院应用物理系, 西安 710072
  • 通信作者: 黄陆军, huanglujun@hit.edu.cn
    基金项目: 国家自然科学基金 (批准号: 51471063, 51271064, 51401167)资助的课题.

摘要: 采用电磁悬浮和自由落体两种试验技术研究了液态Ti-25 wt.%Al合金的亚稳过冷能力、晶体形核机制和枝晶生长过程. 试验发现, 即使电磁悬浮无容器状态下仍难以消除润湿角 60的异质晶核, 合金熔体过冷度可达210 K (0.11TL). -Ti相形核的热力学驱动力随过冷度近似以线性方式增大, 其枝晶生长速度高达11.2 m/s, 从而在慢速冷却条件下实现了快速凝固. 理论计算表明, 随着过冷度的逐步增大, 相枝晶生长从溶质扩散控制转变为热扩散控制. 当过冷度超过100 K时, 非平衡溶质截留效应可使合金熔体发生无偏析凝固. 然而, 单靠深过冷状态不足以抑制相的后续固态相变. 对于落管中快速凝固的直径77-1048 m合金液滴, 其冷却速率最高达1.05105 K/s, 深过冷与快速冷却的耦合作用能更有效地调控凝固组织形成过程.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回