搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交各向异性双层交换弹簧薄膜的磁矩分布

陈传文 项阳

引用本文:
Citation:

正交各向异性双层交换弹簧薄膜的磁矩分布

陈传文, 项阳

Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies

Chen Chuan-Wen, Xiang Yang
PDF
导出引用
  • 本文以Pt84Co16/TbFeCo双层交换弹簧体系为研究对象, 利用微磁学连续模型, 研究了软/硬磁层易轴方向相互垂直的新型体系中磁矩的分布特征. 研究结果表明, 磁矩偏离薄膜法线方向的角度在软磁层中沿膜厚方向的变化速率比硬磁层中的快. 通过调节软磁层参数来增加软/硬磁的各向异性常数比、交换能常数比、饱和磁化强度比或外磁场强度, 都可有效改变磁矩偏角在软/硬磁层中的变化速率. 特别是当软/硬磁各向异性常数比值和交换能常数比值同时增大时, 可以使得磁矩在硬磁层中的变化速率快于软磁层中的. 而饱和磁化强度比值对磁矩变化速率的影响源于饱和磁化强度的变化会相应地改变各向异性常数, 进而改变磁矩在软/硬磁层中磁矩方向变化速率的比值. 此体系的磁滞回线显示磁性参数的改变可以显著改变体系的剩磁及饱和磁场. 软磁层中的退磁场能及体系的正交各向异性可导致负的成核场.
    A soft/hard bilayer system with mutually orthogonal anisotropies is considered in this paper. The easy axis of the hard layer is perpendicular to the film plane, and the easy axis of the soft layer is parallel to the film plane. Pt84Co16 is chosen as the soft layer material, and TbFeCo is chosen as the hard layer material. The one-dimensional continuum micromagnetic model is used. The characteristics of nucleation fields, angular distribution and hysteresis loops are studied. The calculation results show that the nucleation field decreases rapidly and even turns negative with increasing soft layer thickness. This negative nucleation field is caused by the demagnetizing field and the easy axis orientation of the soft layer which is parallel to the film plane. Both of these two factors can induce an effective in-plane uniaxial anisotropy, which will tend to align the magnetization of the soft layer parallel to the film plane. As the magnetocrystalline anisotropy constant K of the soft layer is very small, the negative nucleation field mainly comes from the demagnetizing field of the soft layer. The angular distribution calculation shows that the change rate of magnetization deviation angle (degree per nanometer) along z axis in the soft layer is faster than that in the hard layer. The angular change rate could be adjusted by varying the anisotropy constant ratio, exchange energy constant ratio, or external field. When the anisotropy constant ratio Ks/Kh (soft/hard) or exchange energy constant ratio As/Ah (soft/hard) increases, the angular change rate ratio (soft/hard) decreases. Especially when both Ks/Kh and As/Ah increase at the same time, the angular change rate in the hard layer could become faster than that in the soft layer. If the anisotropy constant Ks becomes larger, it is more difficult for the magnetization in the soft layer to deviate from its easy axis than before. This will also enhance the pinning effect of the magnetization in the soft layer, and reduce the difference in deviation angle between the two boundaries of the soft layer. When the exchange energy constant As increases, the magnetization tends to become parallel to the neighboring magnetization, which also reduces the angular change of magnetization in the soft layer. As the anisotropy constant is roughly proportional to the square of spontaneous magnetization, the effect of spontaneous magnetization on the angular change rate comes from the anisotropy constant change. The simulation for the hysteresis loops shows that the saturation field strength increases while the remanence decreases with increasing both the values of Ks and As.
      通信作者: 项阳, yxiang@hqu.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2013J05010)、中央高校中青年教师科技创新计划(批准号: ZQN-YX107)和华侨大学科研基金(批准号: 11BS403, 11BS404)资助的课题.
      Corresponding author: Xiang Yang, yxiang@hqu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2013J05010), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research, China (Grant No. ZQN-YX107), and the Scientific Research Foundation of Huaqiao University, China (Grant Nos. 11BS403, 11BS404).
    [1]

    Uzdin V M, Vega A, Khrenov A, Keune W, Kuncser V E, Jiang J S, Bader S D 2012 Phys. Rev. B 85 024409

    [2]

    Shelford L R, Liu Y, Al-Jarah U, de Groot P A J, Bowden G J, Ward R C C, Hicken R J 2014 Phys. Rev. Lett. 113 067601

    [3]

    Wang K, Ward R C C, de Groot P A J 2014 Mater. Lett. 116 143

    [4]

    Jiang J S, Bader S D 2014 J. Phys-condens. Mater. 26 064214

    [5]

    Bance S, Oezelt H, Schrefl T, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Evans R F L, Chantrell R W, Shoji T, Yano M, Sakuma N, Kato A, Manabe A 2014 Appl. Phys. Lett. 105 192401

    [6]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [7]

    Suess D, Schrefl T 2013 Appl. Phys. Lett. 102 162405

    [8]

    Weller D, Parker G, Mosendz O, Champion E, Stipe B, Wang X B, Klemmer T, Ju G P, Ajan A 2014 IEEE Trans. Magn. 50 3100108

    [9]

    Wang K, Chen R F, Chen C W, Ward R C C 2015 J. Magn. Magn. Mater. 377 295

    [10]

    Wang K, Xiang Y, Chen C W, Zhuang F J, Wu X F, Ward R 2015 Funct. Mater. Lett. 8 1550053

    [11]

    Zhang Y P, Wang X Y, Lin G Q, Li Z, Li Z Y, Shen D F, Gan F X 2004 Acta Phys. Sin. 53 614 (in Chinese) [张约品, 王现英, 林更琪, 李震, 李佐宜, 沈德芳, 干福熹 2004 物理学报 53 614]

    [12]

    Yulaev I, Lubarda M V, Mangin S, Lomakin V, Fullerton E E 2011 Appl. Phys. Lett. 99 132502

    [13]

    Suess D, Vogler C, Abert C, Bruckner F, Windl R, Breth L, Fidler J 2015 J. Appl. Phys. 117 163913

    [14]

    Hsu J H, Tsai C L, Lee C M, Saravanan P 2015 J. Appl. Phys. 117 17A715

    [15]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [16]

    Zhao G P, Bo N, Zhang H W, Feng Y P, Deng Y 2010 J. Appl. Phys. 107 083907

    [17]

    Mibu K, Nagahama T, Shinjo T 1996 J. Magn. Magn. Mater. 163 75

    [18]

    Fullerton E E, Jiang J S, Grimsditch M, Sowers C H, Bader S D 1998 Phys. Rev. B 58 12193

    [19]

    Bowden G J, Beaujour J M L, Zhukov A A, Rainford B D, de Groot P A J, Ward R C C, Wells M R 2003 J. Appl. Phys. 93 6480

    [20]

    Amato M, Pini M G, Rettori A 1999 Phys. Rev. B 60 3414

    [21]

    Demirtas S, Hossu M R, Arikan M, Koymen A R, Salamon M B 2007 Phys. Rev. B 76 214430

    [22]

    Zhang Y, Kramer M J, Banerjee D, Takeuchi I, Liu J P 2011 J. Appl. Phys. 110 053914

    [23]

    Zhang Y, Zhou Q, Ding J, Yang Z, Zhu B, Yang X, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [24]

    Suess D, Schrefl T, Fhler S, Kirschner M, Hrkac G, Dorfbauer F, Fidler J 2005 Appl. Phys. Lett. 87 012504

    [25]

    Goll D, Breitling A, Gu L, van Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [26]

    Pal S, Barman S, Hellwig O, Barman A 2014 J. Appl. Phys. 115 17D105

    [27]

    Hu X, Kawazoe Y 1994 Phys. Rev. B 49 3294

    [28]

    Nguyen T N A, Knut R, Fallahi V, Chung S, Le Q T, Mohseni S M, Karis O, Peredkov S, Dumas R K, Miller C W, Akerman J 2014 Phys. Rev. Appl. 2 044014

    [29]

    Navas D, Torrejon J, Beron F, Redondo C, Batallan F, Toperverg B P, Devishvili A, Sierra B, Castano F, Pirota K R, Ross C A 2012 New J. Phys. 14 113001

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Saravanan P, Hsu J H, Tsai C L, Tsai C Y, Lin Y H, Kuo C Y, Wu J C, Lee C M 2014 J. Appl. Phys. 115 243905

    [32]

    Bill A, Braun H B 2004 J. Magn. Magn. Mater. 272-276 1266

    [33]

    Casoli F, Albertini F, Nasi L, Fabbrici S, Cabassi R, Bolzoni F, Bocchi C 2008 Appl. Phys. Lett. 92 142506

  • [1]

    Uzdin V M, Vega A, Khrenov A, Keune W, Kuncser V E, Jiang J S, Bader S D 2012 Phys. Rev. B 85 024409

    [2]

    Shelford L R, Liu Y, Al-Jarah U, de Groot P A J, Bowden G J, Ward R C C, Hicken R J 2014 Phys. Rev. Lett. 113 067601

    [3]

    Wang K, Ward R C C, de Groot P A J 2014 Mater. Lett. 116 143

    [4]

    Jiang J S, Bader S D 2014 J. Phys-condens. Mater. 26 064214

    [5]

    Bance S, Oezelt H, Schrefl T, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Evans R F L, Chantrell R W, Shoji T, Yano M, Sakuma N, Kato A, Manabe A 2014 Appl. Phys. Lett. 105 192401

    [6]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [7]

    Suess D, Schrefl T 2013 Appl. Phys. Lett. 102 162405

    [8]

    Weller D, Parker G, Mosendz O, Champion E, Stipe B, Wang X B, Klemmer T, Ju G P, Ajan A 2014 IEEE Trans. Magn. 50 3100108

    [9]

    Wang K, Chen R F, Chen C W, Ward R C C 2015 J. Magn. Magn. Mater. 377 295

    [10]

    Wang K, Xiang Y, Chen C W, Zhuang F J, Wu X F, Ward R 2015 Funct. Mater. Lett. 8 1550053

    [11]

    Zhang Y P, Wang X Y, Lin G Q, Li Z, Li Z Y, Shen D F, Gan F X 2004 Acta Phys. Sin. 53 614 (in Chinese) [张约品, 王现英, 林更琪, 李震, 李佐宜, 沈德芳, 干福熹 2004 物理学报 53 614]

    [12]

    Yulaev I, Lubarda M V, Mangin S, Lomakin V, Fullerton E E 2011 Appl. Phys. Lett. 99 132502

    [13]

    Suess D, Vogler C, Abert C, Bruckner F, Windl R, Breth L, Fidler J 2015 J. Appl. Phys. 117 163913

    [14]

    Hsu J H, Tsai C L, Lee C M, Saravanan P 2015 J. Appl. Phys. 117 17A715

    [15]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [16]

    Zhao G P, Bo N, Zhang H W, Feng Y P, Deng Y 2010 J. Appl. Phys. 107 083907

    [17]

    Mibu K, Nagahama T, Shinjo T 1996 J. Magn. Magn. Mater. 163 75

    [18]

    Fullerton E E, Jiang J S, Grimsditch M, Sowers C H, Bader S D 1998 Phys. Rev. B 58 12193

    [19]

    Bowden G J, Beaujour J M L, Zhukov A A, Rainford B D, de Groot P A J, Ward R C C, Wells M R 2003 J. Appl. Phys. 93 6480

    [20]

    Amato M, Pini M G, Rettori A 1999 Phys. Rev. B 60 3414

    [21]

    Demirtas S, Hossu M R, Arikan M, Koymen A R, Salamon M B 2007 Phys. Rev. B 76 214430

    [22]

    Zhang Y, Kramer M J, Banerjee D, Takeuchi I, Liu J P 2011 J. Appl. Phys. 110 053914

    [23]

    Zhang Y, Zhou Q, Ding J, Yang Z, Zhu B, Yang X, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [24]

    Suess D, Schrefl T, Fhler S, Kirschner M, Hrkac G, Dorfbauer F, Fidler J 2005 Appl. Phys. Lett. 87 012504

    [25]

    Goll D, Breitling A, Gu L, van Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [26]

    Pal S, Barman S, Hellwig O, Barman A 2014 J. Appl. Phys. 115 17D105

    [27]

    Hu X, Kawazoe Y 1994 Phys. Rev. B 49 3294

    [28]

    Nguyen T N A, Knut R, Fallahi V, Chung S, Le Q T, Mohseni S M, Karis O, Peredkov S, Dumas R K, Miller C W, Akerman J 2014 Phys. Rev. Appl. 2 044014

    [29]

    Navas D, Torrejon J, Beron F, Redondo C, Batallan F, Toperverg B P, Devishvili A, Sierra B, Castano F, Pirota K R, Ross C A 2012 New J. Phys. 14 113001

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Saravanan P, Hsu J H, Tsai C L, Tsai C Y, Lin Y H, Kuo C Y, Wu J C, Lee C M 2014 J. Appl. Phys. 115 243905

    [32]

    Bill A, Braun H B 2004 J. Magn. Magn. Mater. 272-276 1266

    [33]

    Casoli F, Albertini F, Nasi L, Fabbrici S, Cabassi R, Bolzoni F, Bocchi C 2008 Appl. Phys. Lett. 92 142506

  • [1] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [2] 何鑫鑫, 赵倩. 界面原子扩散对SmCo/Fe交换弹簧双层膜磁性能影响的微磁学研究. 物理学报, 2021, 70(19): 197502. doi: 10.7498/aps.70.20210623
    [3] 柳钰, 徐忠锋, 王兴, 胡鹏飞, 张小安. 光子碰撞Au靶产生L系特征X射线角分布. 物理学报, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [4] 李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜. Eu原子4f76p1/2ns自电离过程的动力学特性. 物理学报, 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [5] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算. 物理学报, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [6] 潘凤春, 林雪玲, 陈焕铭. 阳离子空位磁矩起因探讨. 物理学报, 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [7] 吕厚祥, 石德政, 谢征微. 铁磁/半导体(绝缘体)/铁磁异质结中渡越时间与两铁磁层磁矩夹角变化的关系. 物理学报, 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [8] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [9] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩. 物理学报, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [10] 葛愉成. 激光-电子康普顿散射物理特性研究. 物理学报, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [11] 魏熙晔, 李泉凤, 严慧勇. 高能电子束韧致辐射特性的理论研究. 物理学报, 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [12] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [13] 黄 整, 陈 波, 麻焕锋, 张秀兰, 高国强, 强伟荣, 孙光爱. 过渡族金属替代元素M对YFe11M系统的磁性质的影响. 物理学报, 2008, 57(3): 1867-1871. doi: 10.7498/aps.57.1867
    [14] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究. 物理学报, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [16] 赵文杰, 杨 致, 闫玉丽, 雷雪玲, 葛桂贤, 王清林, 罗有华. 密度泛函理论计算GenFe(n=1—8)团簇的基态结构及其磁性. 物理学报, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [17] 赵文杰, 王清林, 任凤竹, 罗有华. 第一性原理计算ZrnFe(n=2—13)团簇的基态结构及其磁性. 物理学报, 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
    [18] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究. 物理学报, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [19] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究. 物理学报, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
计量
  • 文章访问数:  2606
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-03-30
  • 刊出日期:  2016-06-05

正交各向异性双层交换弹簧薄膜的磁矩分布

  • 1. 华侨大学信息科学与工程学院, 厦门 361021
  • 通信作者: 项阳, yxiang@hqu.edu.cn
    基金项目: 福建省自然科学基金(批准号: 2013J05010)、中央高校中青年教师科技创新计划(批准号: ZQN-YX107)和华侨大学科研基金(批准号: 11BS403, 11BS404)资助的课题.

摘要: 本文以Pt84Co16/TbFeCo双层交换弹簧体系为研究对象, 利用微磁学连续模型, 研究了软/硬磁层易轴方向相互垂直的新型体系中磁矩的分布特征. 研究结果表明, 磁矩偏离薄膜法线方向的角度在软磁层中沿膜厚方向的变化速率比硬磁层中的快. 通过调节软磁层参数来增加软/硬磁的各向异性常数比、交换能常数比、饱和磁化强度比或外磁场强度, 都可有效改变磁矩偏角在软/硬磁层中的变化速率. 特别是当软/硬磁各向异性常数比值和交换能常数比值同时增大时, 可以使得磁矩在硬磁层中的变化速率快于软磁层中的. 而饱和磁化强度比值对磁矩变化速率的影响源于饱和磁化强度的变化会相应地改变各向异性常数, 进而改变磁矩在软/硬磁层中磁矩方向变化速率的比值. 此体系的磁滞回线显示磁性参数的改变可以显著改变体系的剩磁及饱和磁场. 软磁层中的退磁场能及体系的正交各向异性可导致负的成核场.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回