搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究

黄政 龙超云 周勋 徐明

引用本文:
Citation:

双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究

黄政, 龙超云, 周勋, 徐明

Study on tunneling magnetoresistance effects in parabolic well magnetic tunneling junction with double barriers

Huang Zheng, Long Chao-Yun, Zhou Xun, Xu Ming
PDF
导出引用
  • 采用相干量子输运理论和传递矩阵的方法,在抛物势阱磁性隧道结(F/PW/F)的铁磁和半导体势阱间插入另一种半导体作为势垒,构造具有双势垒的抛物势阱磁性隧道结作为研究对象,研究了抛物势阱宽度、自旋轨道耦合效应、角度效应及插入势垒厚度对隧穿磁阻及自旋输运性质的影响. 计算结果表明,通过适当调节Rashba自旋轨道耦合强度和插入势垒的厚度,可以实现隧穿磁阻(TMR)的调制,能获得较大的TMR值,这些特点有助于促进新型磁性隧道结的开发和应用.
    In this paper, we construct a ferromagnet/semiconductor/ferromagnet parabolic well magnetic tunneling junction with double barriers as research object by inserting another semiconductor as a barrier between ferromagnetic and semiconductor potential wells. On the basis of the quantum coherent transport theory and transfer matrix method, we investigate the spin polarized electron transport and the tunnel magnetic resistance (TMR) in parabolic well magnetic tunneling junction with double barriers. We derive the analytical expressions of transmission probability, tunnel magnetic resistance and spin polarization from the new magnetic tunneling junction mode. The significant quantum size, Rashba spin orbit interaction, the angle effect and the thickness of the double barriers layer are discussed simultaneously. The results indicate that the tunnel magnetic resistance shows periodic variation as the width of the parabolic-well at different angles. The TMR is monotonically decreasing when the angle varying from 0 to up, which reflects the structure of the spin valve effect. Meanwhile, results also show that the spin polarization and the tunnel magnetic resistance oscillate with the same period for different barriers thickness. The phase difference appears after inserting the barriers. With increasing the barriers width, phase difference becomes large. The amplitude and peak to alley ratio of the spin polarization and the tunnel magnetic resistance are increase with the barrier width increases. Furthermore, the spin polarization make quasiperiodic oscillation that the oscillation amplitudes become large, the period and peak to alley ratio are decrease as the Rashba spin-orbit coupling strength increases. It appears the spin flip phenomenon as increasing the thickness of the barriers. The TMR shows the typical properties of resonant tunneling with the increasing of the spin orbit coupling strength. In order to better reveal the role of the symmetry double tunnel barriers in the parabolic well structure, we calculate TMR against the thickness of the double barriers. It is found that the existence of the double tunnel barriers increase the TMR and the spin polarization significantly, which shows that the large TMR value can be obtained with the suitable layer thickness of the double barriers layer and the Rashba spin-orbital coupling coefficients. These characteristics are helpful to promote the development and application of new magnetic tunnel junctions.
      通信作者: 黄政, huangz888@163.com
    • 基金项目: 国家自然科学基金(批准号:11465006,11565009)、贵州省科学技术基金(批准号:黔科合J 字[2014]2078号)、贵州省教育厅优秀科技创新人才奖励计划(批准号:黔教合KY[2015]489)和贵州理工学院高层次人才科研启动经费项目(批准号:XJGC20150401)资助的课题.
      Corresponding author: Huang Zheng, huangz888@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11465006, 11565009), the Guizhou Province Science and Technology Fund of China (Grant No. J[2014]2078), Guizhou Provincial Department of Education Outstanding Scientific and Technological Innovation Talent Incentive Plan, China (Grant No. KY[2015]489), and the High Level Talent Research Fund Project of Guizhou Institute of Technology, China(Grant No. XJGC20150401).
    [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Moser J, Zenger M 2006 Appl. Phys. Lett. 89 162106

    [3]

    Zheng Y L, Lu M C 2015 Acta Phys. Sin. 64 177501 (in Chinese) [郑勇林, 卢孟春 2015 物理学报 64 177501]

    [4]

    Wang H Z, Zheng S S, Chen C C 2015 Chin. Phys. Lett. 32 107303

    [5]

    Gong S J, Duan C G {2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 物理学报 64 187103]

    [6]

    Tang X Y, Lu J W 2015 Chin. Phys. Lett. 32 117302

    [7]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2760 (in Chinese) [杜坚, 王素新, 袁爱国 2010 物理学报 59 2760]

    [8]

    Matsuyama T, Hu C M 2002 Phys. Rev. B 65 155322

    [9]

    Mireles F, Kirczenow G 2002 Phys. Rev. B 66 214415

    [10]

    Schapers Th, Nitta J, Heersche H B 2001 Phys. Rev. B 64 125314

    [11]

    Autes G 2011 Phys. Rev. B 84 134404

    [12]

    Guo Y, Way B, Gu B L, Kawazoe Y 2001 Phys. Lett. A 291 453

    [13]

    Xie Z W, Li B Z 2002 Acta Phys. Sin. 51 399 (in Chinese) [谢征微, 李伯藏 2002 物理学报 51 399]

    [14]

    Jin L, Zhu L, Li L, Xie Z W 2009 Acta Phys. Sin. 58 8577 (in Chinese) [金莲, 朱林, 李玲, 谢征微 2009 物理学报 58 8577]

    [15]

    Yuen W P 1993 Phys. Rev. B 48 17316

    [16]

    Burnet J H, Cheong H M, paul W {2013 Phys. Rev. B 48 7940

    [17]

    Maranowski K D, Gossard A C {2000 J. Appl. Phys. 77 2746

    [18]

    Niculescu E C, Burileanu L {2003 Mod. Phys. Lett. B17 1253

    [19]

    Gusev G M, Quivy A A 2003 Phys. Rev. B 67 155313

    [20]

    Hashimzade F M, Hasanov Kh A 2006 Phys. Rev. B 73 235349

    [21]

    Liu D, Zhang H M, Jia X M 2011 Acta Phys. Sin. 60 017506 (in Chinese) [刘德, 张红梅, 贾秀敏 2011 物理学报 60 017506]

    [22]

    Chen X, Lu X J 2011 Phys. Rev. B 83 195409

    [23]

    Herling G H, Rustgi M L 1992 J. Appl. Phys. 71 796

    [24]

    Qi X H, Kong X J, Liu J J 1998 Phys. Rev. B 58 10578

    [25]

    Landauer R 1957 IBM J. Res. Dev. 1 223

  • [1]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [2]

    Moser J, Zenger M 2006 Appl. Phys. Lett. 89 162106

    [3]

    Zheng Y L, Lu M C 2015 Acta Phys. Sin. 64 177501 (in Chinese) [郑勇林, 卢孟春 2015 物理学报 64 177501]

    [4]

    Wang H Z, Zheng S S, Chen C C 2015 Chin. Phys. Lett. 32 107303

    [5]

    Gong S J, Duan C G {2015 Acta Phys. Sin. 64 187103 (in Chinese) [龚士静, 段纯刚 2015 物理学报 64 187103]

    [6]

    Tang X Y, Lu J W 2015 Chin. Phys. Lett. 32 117302

    [7]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2760 (in Chinese) [杜坚, 王素新, 袁爱国 2010 物理学报 59 2760]

    [8]

    Matsuyama T, Hu C M 2002 Phys. Rev. B 65 155322

    [9]

    Mireles F, Kirczenow G 2002 Phys. Rev. B 66 214415

    [10]

    Schapers Th, Nitta J, Heersche H B 2001 Phys. Rev. B 64 125314

    [11]

    Autes G 2011 Phys. Rev. B 84 134404

    [12]

    Guo Y, Way B, Gu B L, Kawazoe Y 2001 Phys. Lett. A 291 453

    [13]

    Xie Z W, Li B Z 2002 Acta Phys. Sin. 51 399 (in Chinese) [谢征微, 李伯藏 2002 物理学报 51 399]

    [14]

    Jin L, Zhu L, Li L, Xie Z W 2009 Acta Phys. Sin. 58 8577 (in Chinese) [金莲, 朱林, 李玲, 谢征微 2009 物理学报 58 8577]

    [15]

    Yuen W P 1993 Phys. Rev. B 48 17316

    [16]

    Burnet J H, Cheong H M, paul W {2013 Phys. Rev. B 48 7940

    [17]

    Maranowski K D, Gossard A C {2000 J. Appl. Phys. 77 2746

    [18]

    Niculescu E C, Burileanu L {2003 Mod. Phys. Lett. B17 1253

    [19]

    Gusev G M, Quivy A A 2003 Phys. Rev. B 67 155313

    [20]

    Hashimzade F M, Hasanov Kh A 2006 Phys. Rev. B 73 235349

    [21]

    Liu D, Zhang H M, Jia X M 2011 Acta Phys. Sin. 60 017506 (in Chinese) [刘德, 张红梅, 贾秀敏 2011 物理学报 60 017506]

    [22]

    Chen X, Lu X J 2011 Phys. Rev. B 83 195409

    [23]

    Herling G H, Rustgi M L 1992 J. Appl. Phys. 71 796

    [24]

    Qi X H, Kong X J, Liu J J 1998 Phys. Rev. B 58 10578

    [25]

    Landauer R 1957 IBM J. Res. Dev. 1 223

  • [1] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [2] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究. 物理学报, 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [3] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [4] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [5] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [6] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [7] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [8] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [9] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展. 物理学报, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [10] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [11] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [12] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应. 物理学报, 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [13] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [14] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究. 物理学报, 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [15] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究. 物理学报, 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [16] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究. 物理学报, 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [17] 由 臣, 赵燕平, 金恩姬, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结. 物理学报, 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [18] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备. 物理学报, 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [19] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法. 物理学报, 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  2860
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-05-27
  • 刊出日期:  2016-08-05

双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究

  • 1. 贵州理工学院电气工程学院, 贵阳 550003;
  • 2. 贵州大学, 光电子技术及应用重点实验室, 贵阳 550025;
  • 3. 贵州师范大学物理与电子科学学院, 贵阳 550001;
  • 4. 四川师范大学物理与电子工程学院, 贵阳 610066
  • 通信作者: 黄政, huangz888@163.com
    基金项目: 国家自然科学基金(批准号:11465006,11565009)、贵州省科学技术基金(批准号:黔科合J 字[2014]2078号)、贵州省教育厅优秀科技创新人才奖励计划(批准号:黔教合KY[2015]489)和贵州理工学院高层次人才科研启动经费项目(批准号:XJGC20150401)资助的课题.

摘要: 采用相干量子输运理论和传递矩阵的方法,在抛物势阱磁性隧道结(F/PW/F)的铁磁和半导体势阱间插入另一种半导体作为势垒,构造具有双势垒的抛物势阱磁性隧道结作为研究对象,研究了抛物势阱宽度、自旋轨道耦合效应、角度效应及插入势垒厚度对隧穿磁阻及自旋输运性质的影响. 计算结果表明,通过适当调节Rashba自旋轨道耦合强度和插入势垒的厚度,可以实现隧穿磁阻(TMR)的调制,能获得较大的TMR值,这些特点有助于促进新型磁性隧道结的开发和应用.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回