搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子薄膜表征技术

曾娴 杨朝晖 张晓华

引用本文:
Citation:

高分子薄膜表征技术

曾娴, 杨朝晖, 张晓华

Characterization tools for polymer thin films

Zeng Xian, Yang Zhao-Hui, Zhang Xiao-Hua
PDF
导出引用
  • 随着纳米技术在微电子、生物医药、能源等领域的快速发展,如何在纳米尺度构筑性能稳定、性质均一的多功能纳米器件已成为纳米科技领域最具有挑战性的前沿技术之一。 具有广泛应用前景的高分子薄膜的制备、性质以及应用研究一直以来都受到学术界与工业界的高度关注 对高分子薄膜的内部结构、表面形貌、机械性能、电化学性能等的检测一直是高分子领域的主要研究热点之一。 本文综述了高分子薄膜的测试方法,包括原子力显微镜、电子显微镜、X 光散射、中子散射、椭圆偏振光等表征技术.
    The nanotechnology has emerged as an effective tool to fabricate next-generation microelectronics, biologically responsive materials, and structured membranes. The self-assembly of nanoscale phases has extensively been studied in thin films because of their potential applications in sub-100 nm structures. The control of the ordering of nanaoscale patterns is critical for various technological applications. A variety of approaches such as topographical and chemical patterning have resulted in an enhancement in long-range orders of nanoscale patterns. The macroscopically large areas of nanoscale domains with single-crystal order in polymer thin films can be utilized to fabricate portable ultra-high density data storages, advanced sensors and ultra-light electronic devices. However, as pattern size decreases below 100 nm, there appear many new challenges such as the cost of patterning and the precise control of the line edge roughness and line width roughness. Precisely controlling nanostructure shapes and placements in material is a continuing challenge. Measurement platform to provide accurate and detailed information about nanostructure orientations and placements is a key to this challenge. In this review, we examine the recent progress of characterization tools in polymer thin films. We highlight our efforts to control surface pattern formations of polymer thin films and our use of statistically-useful scattering techniques and real-space imaging tools to quantify the order of nanoscale patterns. In some technological applications of biological membranes, such as chemical separations, drug delivery and sensors, the orientation distribution of nanostructures is often more important. The real-space imaging methods of characterizing the orientation distribution of nanostructures, such as cross-sectional electron microscopy measurements and depth profiling by alternating etch and surface imaging steps are readily performed on thin polymer films over large areas. However, these real-space imaging techniques are destructive measures of nanostructures in polymer thin films. Also it is challenging to in-situ measure the evolution of orientation of nanoscale patterns during processing by using these destructive real-space imaging techniques. Rotational small-angle neutron scattering (RSANS) and grazing-incidence small-angle x-ray scattering (GISAXS) are effective and non-destructive measurement tools to measure the evolution of orientation distribution of nanoscale patterns during processing. In this rotational small angle neutron scattering method, the sample is rotated in the neuron beam. By accumulating the scattering density at each sample rotation angle, the three-dimensional Fourier space of the internal ordering in the nanostructured film can be mapped. By using this relatively new rotational small angle neutron scattering method and established models for nanoscale patterns, the full three-dimensional orientation distribution of nanoscale patterns can be obtained.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn;zhangxiaohua@suda.edu.cn ; Zhang Xiao-Hua, yangzhaohui@suda.edu.cn;zhangxiaohua@suda.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 21274103, 21204059) and the Jiangsu Scientific and Technological Innovation Team (2013).
    [1]

    Alcoutlabi M, McKennad G B 2005 J. Phys.: Condens. Matter. 17 461

    [2]

    Kanaya T 2013 Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films Advances in Polymer Science (Berlin: Springer) pp29-63

    [3]

    Keddie J L, Jones R A L, Cory R A 1994 Euro. Phys. Lett. 27 59

    [4]

    Forrest J A, Dalnoki-Veress K, Stevens J R, Dutcher J R 1996 Phys. Rev. Lett. 77 2002

    [5]

    Fukao K, Miyamoto Y 2000 Phys. Rev. E 61 1743

    [6]

    Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695

    [7]

    Inoue R, Kanaya T, Nishida K, Tsukushi I, Shibata K 2005 Phys. Rev. Lett. 95 056102

    [8]

    Koh Y P, Mckenna G B, Simon S L 2006 Polym. Phys. 44 3518

    [9]

    Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676

    [10]

    Napolitano S 2015 Non-equilibrium Phenomena in Confined Soft Matter (Switzerland: Springer) pp25-46

    [11]

    Jiang H, Dou N N, Fan G Q, Yang Z H, Zhang X H 2013 J. Chem. Phys. 139 124903

    [12]

    Shi H F, Jiang H, Fan G Q, Yang Z H, Zhang X H 2015 RSC Adv. 5 60015

    [13]

    Zhang X H, Yager K G, Fredin N J, Ro H W, Jones R L, Karim A, Douglas J F 2010 ACS Nano 4 3653

    [14]

    Tang C, Tracz A, Kruk M, Zhang R, Smilgies D M, Matyjaszewski K, Kowalewski T 2005 J. Am. Chem. Soc. 127 6918

    [15]

    Mller-Buschbaum P, Bauer E, Maurer E, Schlogl K, Roth S V, Gehrke R 2006 Appl. Phys. Lett. 88 083114

    [16]

    Zhang X, Yager K G, Douglas J F, Karim A 2014 Soft Matter 10 3656

    [17]

    Park S, Kwon K, Cho D, Lee B, Ree M, Chang T 2003 Macromolecules 36 4662

    [18]

    Meier R, Schindler M, Mller-Buschbaum P, Watts B 2011 Phys. Rev. B 84 174205

    [19]

    DeLongchamp D M, Kline R J, Fischer D A, Richter L J, Toney M F 2011 Adv. Mater. 23 319

    [20]

    Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E 2012 J. Am. Chem. Soc. 134 2884

    [21]

    Kim B J, Miyamoto Y, Ma B, Frechet J M J 2009 Adv. Func. Mater. 19 2273

    [22]

    Smith K A, Lin Y H, Mok J W, Yager K G, Strzalka J, Nie W, Mohite A D, Verduzco R 2015 Macromolecules 48 8346

    [23]

    Reiter G 1994 Macromolecules 27 3046

    [24]

    Reiter G 1993 Europhys. Lett. 26 579

    [25]

    Schmitt J, Decher G, Dressick W J, Brandow S L, Geer R E, Shashidhar R, Calver J M 1997 Adv. Mater. 9 61

    [26]

    Swaraj S, Wang C, Yan HP, Watts B, Jan L N, McNeill C R, Ade H 2010 Nano Lett. 10 2863

    [27]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864

    [28]

    Tong M H, Cho S, Rogers J T, Schmidt K, Hsu B B Y, Moses D, Coffin R C, Kramer E J, Bazan G C, Heeger A J 2010 Adv. Funct. Mater. 20 3959

    [29]

    Lai L F, Yang H P, Wang L, Teh B K, Zhong J Q, Chou H, Chen L W, Chen W, Shen Z X, Ruoff R S 2012 ACS Nano 6 5941

    [30]

    Gurau M C, Delongchamp D M, Vogel B M, Lin E K, Fischer D A, Sambasivan S, Richter L J 2007 Langmuir 2 834

    [31]

    Morin C, Ikeura-Sekiguchi H, Tyliszczak T, Cornelius R, Brash J L, Hitchcock A P, Scholl A, Nolting F, Appel G, Winesett 2001 J. Electron Spectrosc. Relat. Phenom. 121 203

    [32]

    Zhang X H, Berry B C, Yager K G, Kim S, Jones R L, Satija S, Pickel D L, Douglas J F, Karim A 2008 ACS Nano 2 2331

    [33]

    Zhang X H, Douglas J F, Satija S, Karim A 2015 RSC Adv. 5 32307

    [34]

    Schmidt-Rohr K, Chen Q 2008 Nat. Mater. 7 75

    [35]

    Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P 1999 Nature 400 146

    [36]

    Muller-Buschbaum P, Gutmann J S, Cubitt R, Petry W 2004 Phys. B 350 207

    [37]

    Tanaka M, Sackmann E 2005 Nature 437 656

    [38]

    Parnell A J, Dunbar A D F, Pearson A J, Staniec P A, Dennison A J C, Hamamatsu H, Skoda M W A, Lidzey D G, Jones R A L 2010 Adv. Mater. 22 2444

    [39]

    Kajiyama T, Tanaka K, Satomi N, Takahara A 1998 Macromolecules 31 5150

    [40]

    Hammerschmidt J A, Gladfelter W L, Haugstad G 1999 Macromolecules 32 3360

    [41]

    Tsui O K C, Wang X P, Ho J Y L, Ng T K, Xiao X 2000 Macromolecules 33 4198

    [42]

    Fryer D S, Peters R D, Kim E J, Tomaszewski J E, de Pablo J J, Nealey P F, White C C, Wu W L 2001 Macromolecules 34 5627

    [43]

    Fryer D S, Nealey P F, de Pablo J J 2000 Macromolecules 33 6439

    [44]

    Kawana S, Jones R A L 2001 Phys. Rev. E 63 021501

    [45]

    Mattsson J, Forrest J A, Borjesson L 2000 Phys. Rev. E 62 5187

    [46]

    Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M, Fytas G, Nealey P F 2007 Macromolecules 40 7283

    [47]

    Hartschuh R, Ding Y, Roh J H, Kisliuk A, Sokolov A P, Soles C L, Jones R L, Hu T J, Wu W L, Mahorowala A P 2004 J. Polym. Sci., Part B: Polym. Phys. 42 1106

    [48]

    Kwak G, Fukao S, Fujiki M, Sakaguchi T, Masuda T 2006 Chem. Mater. 18 2081

    [49]

    Anastasiadis S H, Karatasos K, Vlachos G, Manias E, Giannelis E P 2000 Phys. Rev. Lett. 84 915

    [50]

    Rajendran S, Sivakumar M, Subadevi R 2004 Mater. Lett. 58 641

    [51]

    Tress M, Erber M, Mapesa E U, Huth H, Muller J, Serghei A, Schick C, Eichhorn K J, Volt B, Kremer F 2010 Macromolecules 43 9937

    [52]

    Flier B M, Baier M C, Huber J, Mullen K, Mecking S, Zumbusch A, Woll D 2012 J. Am. Chem. Soc. 134 480

    [53]

    Yung P K, Mckenna G B, Simon S L 2006 J. Polym. Sci., Part B: Polym. Phys. 44 3518

    [54]

    Efremov M Y, Olson E A, Zhang M, Zhang Z, Allen L H 2003 Phys. Rev. Lett. 91 085703

    [55]

    Madkour S, Yin H, Fullbrandt M, Schonhals A 2015 Soft Matter 11 7942

    [56]

    Glor E C, Composto R J, Fakhraai Z 2015 Macromolecules 48 6682

    [57]

    Zhang X, Lacerda S H, Yager K G, Berry B C, Douglas J F, Jones R L, Karim A 2009 ACS Nano 3 2115

    [58]

    Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak R J 2001 Phys. Rev. E 64 010803

    [59]

    Park H W, Jung J, Chang T, Matsunaga K, Jinnai H 2009 J. Am. Chem. Soc. 131 46

    [60]

    Niihara K, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S, Jinnai H 2008 Macromolecules 41 9318

    [61]

    Brinkmann M, Rannou P 2009 Macromolecules 42 1125

    [62]

    Salammal S T, Mikayelyan E, Grigorian S, Pietsch U, Koenen N, Scherf U 2012 Macromolecules 45 5575

    [63]

    Drummy L F, Yang J, Martin D C 2004 Ultramicroscopy 99 247

    [64]

    Donald A M, He C B, Royall C P, Sferrazza M, Stelmashenko N A, Thiel B L 2000 Colloids Surf. A 174 37

    [65]

    Marjanski M, Srinivasarao M, Mirau P A 1998 Solid State Nucl. Magn. Reson. 12 113

    [66]

    Fukushima T, Kimura H, Shimahara Y, Kaji H 2011 Appl. Phys.Lett. 99 223301

  • [1]

    Alcoutlabi M, McKennad G B 2005 J. Phys.: Condens. Matter. 17 461

    [2]

    Kanaya T 2013 Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films Advances in Polymer Science (Berlin: Springer) pp29-63

    [3]

    Keddie J L, Jones R A L, Cory R A 1994 Euro. Phys. Lett. 27 59

    [4]

    Forrest J A, Dalnoki-Veress K, Stevens J R, Dutcher J R 1996 Phys. Rev. Lett. 77 2002

    [5]

    Fukao K, Miyamoto Y 2000 Phys. Rev. E 61 1743

    [6]

    Ellison C J, Torkelson J M 2003 Nat. Mater. 2 695

    [7]

    Inoue R, Kanaya T, Nishida K, Tsukushi I, Shibata K 2005 Phys. Rev. Lett. 95 056102

    [8]

    Koh Y P, Mckenna G B, Simon S L 2006 Polym. Phys. 44 3518

    [9]

    Yang Z H, Fujii Y, Lee F K, Lam C H, Tsui O K C 2010 Science 328 1676

    [10]

    Napolitano S 2015 Non-equilibrium Phenomena in Confined Soft Matter (Switzerland: Springer) pp25-46

    [11]

    Jiang H, Dou N N, Fan G Q, Yang Z H, Zhang X H 2013 J. Chem. Phys. 139 124903

    [12]

    Shi H F, Jiang H, Fan G Q, Yang Z H, Zhang X H 2015 RSC Adv. 5 60015

    [13]

    Zhang X H, Yager K G, Fredin N J, Ro H W, Jones R L, Karim A, Douglas J F 2010 ACS Nano 4 3653

    [14]

    Tang C, Tracz A, Kruk M, Zhang R, Smilgies D M, Matyjaszewski K, Kowalewski T 2005 J. Am. Chem. Soc. 127 6918

    [15]

    Mller-Buschbaum P, Bauer E, Maurer E, Schlogl K, Roth S V, Gehrke R 2006 Appl. Phys. Lett. 88 083114

    [16]

    Zhang X, Yager K G, Douglas J F, Karim A 2014 Soft Matter 10 3656

    [17]

    Park S, Kwon K, Cho D, Lee B, Ree M, Chang T 2003 Macromolecules 36 4662

    [18]

    Meier R, Schindler M, Mller-Buschbaum P, Watts B 2011 Phys. Rev. B 84 174205

    [19]

    DeLongchamp D M, Kline R J, Fischer D A, Richter L J, Toney M F 2011 Adv. Mater. 23 319

    [20]

    Rogers J T, Schmidt K, Toney M F, Bazan G C, Kramer E 2012 J. Am. Chem. Soc. 134 2884

    [21]

    Kim B J, Miyamoto Y, Ma B, Frechet J M J 2009 Adv. Func. Mater. 19 2273

    [22]

    Smith K A, Lin Y H, Mok J W, Yager K G, Strzalka J, Nie W, Mohite A D, Verduzco R 2015 Macromolecules 48 8346

    [23]

    Reiter G 1994 Macromolecules 27 3046

    [24]

    Reiter G 1993 Europhys. Lett. 26 579

    [25]

    Schmitt J, Decher G, Dressick W J, Brandow S L, Geer R E, Shashidhar R, Calver J M 1997 Adv. Mater. 9 61

    [26]

    Swaraj S, Wang C, Yan HP, Watts B, Jan L N, McNeill C R, Ade H 2010 Nano Lett. 10 2863

    [27]

    Ma W, Tumbleston J R, Wang M, Gann E, Huang F, Ade H 2013 Adv. Energy Mater. 3 864

    [28]

    Tong M H, Cho S, Rogers J T, Schmidt K, Hsu B B Y, Moses D, Coffin R C, Kramer E J, Bazan G C, Heeger A J 2010 Adv. Funct. Mater. 20 3959

    [29]

    Lai L F, Yang H P, Wang L, Teh B K, Zhong J Q, Chou H, Chen L W, Chen W, Shen Z X, Ruoff R S 2012 ACS Nano 6 5941

    [30]

    Gurau M C, Delongchamp D M, Vogel B M, Lin E K, Fischer D A, Sambasivan S, Richter L J 2007 Langmuir 2 834

    [31]

    Morin C, Ikeura-Sekiguchi H, Tyliszczak T, Cornelius R, Brash J L, Hitchcock A P, Scholl A, Nolting F, Appel G, Winesett 2001 J. Electron Spectrosc. Relat. Phenom. 121 203

    [32]

    Zhang X H, Berry B C, Yager K G, Kim S, Jones R L, Satija S, Pickel D L, Douglas J F, Karim A 2008 ACS Nano 2 2331

    [33]

    Zhang X H, Douglas J F, Satija S, Karim A 2015 RSC Adv. 5 32307

    [34]

    Schmidt-Rohr K, Chen Q 2008 Nat. Mater. 7 75

    [35]

    Jones R L, Kumar S K, Ho D L, Briber R M, Russell T P 1999 Nature 400 146

    [36]

    Muller-Buschbaum P, Gutmann J S, Cubitt R, Petry W 2004 Phys. B 350 207

    [37]

    Tanaka M, Sackmann E 2005 Nature 437 656

    [38]

    Parnell A J, Dunbar A D F, Pearson A J, Staniec P A, Dennison A J C, Hamamatsu H, Skoda M W A, Lidzey D G, Jones R A L 2010 Adv. Mater. 22 2444

    [39]

    Kajiyama T, Tanaka K, Satomi N, Takahara A 1998 Macromolecules 31 5150

    [40]

    Hammerschmidt J A, Gladfelter W L, Haugstad G 1999 Macromolecules 32 3360

    [41]

    Tsui O K C, Wang X P, Ho J Y L, Ng T K, Xiao X 2000 Macromolecules 33 4198

    [42]

    Fryer D S, Peters R D, Kim E J, Tomaszewski J E, de Pablo J J, Nealey P F, White C C, Wu W L 2001 Macromolecules 34 5627

    [43]

    Fryer D S, Nealey P F, de Pablo J J 2000 Macromolecules 33 6439

    [44]

    Kawana S, Jones R A L 2001 Phys. Rev. E 63 021501

    [45]

    Mattsson J, Forrest J A, Borjesson L 2000 Phys. Rev. E 62 5187

    [46]

    Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M, Fytas G, Nealey P F 2007 Macromolecules 40 7283

    [47]

    Hartschuh R, Ding Y, Roh J H, Kisliuk A, Sokolov A P, Soles C L, Jones R L, Hu T J, Wu W L, Mahorowala A P 2004 J. Polym. Sci., Part B: Polym. Phys. 42 1106

    [48]

    Kwak G, Fukao S, Fujiki M, Sakaguchi T, Masuda T 2006 Chem. Mater. 18 2081

    [49]

    Anastasiadis S H, Karatasos K, Vlachos G, Manias E, Giannelis E P 2000 Phys. Rev. Lett. 84 915

    [50]

    Rajendran S, Sivakumar M, Subadevi R 2004 Mater. Lett. 58 641

    [51]

    Tress M, Erber M, Mapesa E U, Huth H, Muller J, Serghei A, Schick C, Eichhorn K J, Volt B, Kremer F 2010 Macromolecules 43 9937

    [52]

    Flier B M, Baier M C, Huber J, Mullen K, Mecking S, Zumbusch A, Woll D 2012 J. Am. Chem. Soc. 134 480

    [53]

    Yung P K, Mckenna G B, Simon S L 2006 J. Polym. Sci., Part B: Polym. Phys. 44 3518

    [54]

    Efremov M Y, Olson E A, Zhang M, Zhang Z, Allen L H 2003 Phys. Rev. Lett. 91 085703

    [55]

    Madkour S, Yin H, Fullbrandt M, Schonhals A 2015 Soft Matter 11 7942

    [56]

    Glor E C, Composto R J, Fakhraai Z 2015 Macromolecules 48 6682

    [57]

    Zhang X, Lacerda S H, Yager K G, Berry B C, Douglas J F, Jones R L, Karim A 2009 ACS Nano 3 2115

    [58]

    Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak R J 2001 Phys. Rev. E 64 010803

    [59]

    Park H W, Jung J, Chang T, Matsunaga K, Jinnai H 2009 J. Am. Chem. Soc. 131 46

    [60]

    Niihara K, Sugimori H, Matsuwaki U, Hirato F, Morita H, Doi M, Masunaga H, Sasaki S, Jinnai H 2008 Macromolecules 41 9318

    [61]

    Brinkmann M, Rannou P 2009 Macromolecules 42 1125

    [62]

    Salammal S T, Mikayelyan E, Grigorian S, Pietsch U, Koenen N, Scherf U 2012 Macromolecules 45 5575

    [63]

    Drummy L F, Yang J, Martin D C 2004 Ultramicroscopy 99 247

    [64]

    Donald A M, He C B, Royall C P, Sferrazza M, Stelmashenko N A, Thiel B L 2000 Colloids Surf. A 174 37

    [65]

    Marjanski M, Srinivasarao M, Mirau P A 1998 Solid State Nucl. Magn. Reson. 12 113

    [66]

    Fukushima T, Kimura H, Shimahara Y, Kaji H 2011 Appl. Phys.Lett. 99 223301

  • [1] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保. 原位表征技术在全固态锂电池中的应用. 物理学报, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [2] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [3] 李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖. 碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响. 物理学报, 2019, 68(2): 026402. doi: 10.7498/aps.68.20182008
    [4] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 华昀峰, 张冬, 章林溪. 半刚性高分子链螺旋结构诱导纳米棒的有序结构. 物理学报, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [7] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] 陆乃彦, 翁雨燕. 软模板纳米压印技术及其对共轭高分子的取向控制研究. 物理学报, 2014, 63(22): 228104. doi: 10.7498/aps.63.228104
    [9] 刘宁, 张新平, 窦菲. 小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究. 物理学报, 2012, 61(2): 027201. doi: 10.7498/aps.61.027201
    [10] 张洪玉, 张韶华, 梁鹤, 刘宇宏, 雒建斌. 纳米级润滑膜分子排列取向的拉曼光谱表征技术. 物理学报, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [11] 温晓会, 章林溪. 打结高分子链穿孔行为的研究. 物理学报, 2010, 59(10): 7404-7409. doi: 10.7498/aps.59.7404
    [12] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [13] 张佳, 王育华, 王丹. 纳米YPO4:Eu3+的合成及发光性质研究. 物理学报, 2009, 58(10): 7267-7271. doi: 10.7498/aps.58.7267
    [14] 肖思国, 阳效良, 丁建文, 颜晓红. 尺寸效应对Er3+掺杂纳米Y2O3的发光特性的影响. 物理学报, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [15] 吉 青, 乔宝福, 赵得禄. 高分子的溶度参数理论. 物理学报, 2007, 56(3): 1815-1818. doi: 10.7498/aps.56.1815
    [16] 张 芸, 张波萍, 焦力实, 张海龙, 李向阳. Au/SiO2纳米多层薄膜的制备及其性质表征. 物理学报, 2006, 55(7): 3730-3735. doi: 10.7498/aps.55.3730
    [17] 郭坤琨, 邱 枫, 张红东, 杨玉良. 高分子锚定的流体膜. 物理学报, 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
    [18] 冯文然, 阎殿然, 何继宁, 陈光良, 顾伟超, 张谷令, 刘赤子, 杨思泽. 反应等离子喷涂纳米TiN涂层的显微硬度及微观结构研究. 物理学报, 2005, 54(5): 2399-2402. doi: 10.7498/aps.54.2399
    [19] 余柏林, 唐新峰, 祁 琼, 张清杰. CoSb3纳米热电材料的制备及热传输特性. 物理学报, 2004, 53(9): 3130-3135. doi: 10.7498/aps.53.3130
    [20] 孙鑫, 陈洪奕, 吴长勤, 傅荣堂, 傅柔励. 高分子中电子相互作用矩阵元. 物理学报, 1991, 40(1): 102-108. doi: 10.7498/aps.40.102
计量
  • 文章访问数:  4449
  • PDF下载量:  522
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 修回日期:  2016-07-06
  • 刊出日期:  2016-09-05

高分子薄膜表征技术

    基金项目: 国家自然科学基金(批准号:21274103,21204059)和2013年江苏省创新团队计划资助的课题.

摘要: 随着纳米技术在微电子、生物医药、能源等领域的快速发展,如何在纳米尺度构筑性能稳定、性质均一的多功能纳米器件已成为纳米科技领域最具有挑战性的前沿技术之一。 具有广泛应用前景的高分子薄膜的制备、性质以及应用研究一直以来都受到学术界与工业界的高度关注 对高分子薄膜的内部结构、表面形貌、机械性能、电化学性能等的检测一直是高分子领域的主要研究热点之一。 本文综述了高分子薄膜的测试方法,包括原子力显微镜、电子显微镜、X 光散射、中子散射、椭圆偏振光等表征技术.

English Abstract

参考文献 (66)

目录

    /

    返回文章
    返回