搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性

张翔宇 王晋国 徐春龙 潘渊 侯兆阳 丁健 高当丽

引用本文:
Citation:

NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性

张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽,

Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods

Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li
PDF
导出引用
  • 基于频域和时域的光谱学分析,系统地研究了Tm3+掺杂的NaYF4纳米棒的荧光选择输出特性及荧光输出与激光脉冲宽度、激发波长、抽运功率及环境温度的依赖关系.结果表明:与其他因素相比,输出光色强烈地依赖于激光脉宽.通过合适的脉宽激光激发,在NaYF4:0.5 mol% Tm3+纳米棒中获得了强烈的单带近红外荧光发射,该波段荧光在深层组织成像方面具有极大应用优势.基于多声子无辐射弛豫理论和荧光动力学过程,揭示了脉冲宽度调控的单带近红外荧光的输出机理,其机理为多声子弛豫辅助的下转换荧光和激光脉宽调制的上转换荧光之间的竞争,该研究为光谱调控提供了新的理论依据和途径.
    The variations in material composition, phase and structure can provide a useful tool for tuning emission colour, but the controlling of the emission colour in a material, with a composition fixed, remains to be a daunting challenge. In this work, we systematically study the luminescence selective output characteristics of Tm3+ doped NaYF4 nanorods, and also the dependences of fluerecence output on pulse duration, excitation wavelength, pump power, and ambient temperature. The results show that the color of output light is strongly dependent on laser pulse duration compared with other factors. The temperature dependent luminescence of the nanorods shows very different behaviors with short-pulse laser excitation from those of continuous wave (CW) laser. When the pulse laser at 656 nm is employed, the emission spectra from NaYF4:0.5 mol% Tm3+ nanorods at the different temperatures are dominated by near-infrared (NIR) luminescence about 800 nm accompanied with weak blue luminescence, giving rise to nearly spectrally-pure NIR emissions at 20 K. When the pulse laser is replaced by CW laser, blue double emissions at 453 and 478 nm with the same order of magnitude of NIR luminescence can be clearly detected at room temperature. The key mechanism responsible for colour-tunable emission can be explained in terms of the population process of luminescence level, in which the different luminescence level populations need different time intervals. Considering excited-state absorption (ESA) for a particular 1D2 energy level, there needs an extra step of 3F2, 33H4 multiphonon nonradiation relaxation process to populate the 3H4 state and subsequently pump its 1D2 state for blue emission. Therefore, the pulse width should be longer than nonradiation relaxation time of 3F2, 33H4 to comply with the ESA, while the nonradiation relaxation time can further be tuned by controlling ambient temperature. We show that the variation of the excitation power leads to interesting change in the upconversion (UC) decay curve. We focus our attention on the excitation wavelength dependences of 3H4 and 1D2 emission lifetimes in order to validate the population mechanism of luminescence level. We demonstrate that the 3H4 luminescence time depends on excitation wavelength, while 1D2 emission lifetime nearly keeps constant when varying the excitation wavelength. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is indicated that the UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface, while downconversion is mainly from the ions in the core for NaYF4:Tm3+ nanorods. The single-band NIR luminescence output by changing the pulse width and excitation wavelength provides an insight into the controlling of the population processes of luminescent levels and offers a versatile approach to tuning the spectral output.
      通信作者: 张翔宇, xyzhang@chd.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51101022)、陕西省青年科技新星项目(批准号:2015KJXX-33)、陕西省自然科学基金(批准号:2014JQ1008,2014JM2-5066)和中央高校基本科研业务费(2013G1121085,310812152001)资助的课题.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51101022), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2014JQ1008, 2014JM2-5066), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2013G1121085, 310812152001).
    [1]

    Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75

    [2]

    Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808

    [3]

    Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]

    [4]

    Li C X, Lin J 2010 J. Mater. Chem. 20 6831

    [5]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [6]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849

    [7]

    Qian H S, Zhang Y 2008 Langumuir 24 12123

    [8]

    Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068

    [9]

    Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558

    [10]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852

    [11]

    Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]

    [12]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343

    [13]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [14]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [15]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [16]

    Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423

    [17]

    Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]

    [18]

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015物理学报64 243301]

    [19]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [20]

    Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357

    [21]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015物理学报64 138101]

    [22]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [23]

    Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937

    [24]

    Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644

    [25]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200

    [26]

    Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608

    [27]

    Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831

    [28]

    Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536

    [29]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133

    [31]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [32]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [33]

    Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580

    [34]

    Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528

    [35]

    Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694

    [36]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [37]

    Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506

    [38]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [39]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976

    [40]

    Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906

  • [1]

    Feng W, Zhu X J, Li F Y 2015 NPG Asia Mater. 5 e75

    [2]

    Haase M, Schafer H 2011 Angew. Chem. Int. Ed. 50 5808

    [3]

    Ding Y, Gu J, Zhang Y W, Sun L D, Yan C H 2012 Sci. Sin.:Technol. 42 1(in Chinese)[丁祎, 顾均, 张亚文, 孙聆东, 严纯华2012中国科学:技术科学42 1]

    [4]

    Li C X, Lin J 2010 J. Mater. Chem. 20 6831

    [5]

    Kramer K W, Biner D, Frei G, Gudel H U, Hehlen M P, Luthi S R 2004 Chem. Mater. 16 1244

    [6]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849

    [7]

    Qian H S, Zhang Y 2008 Langumuir 24 12123

    [8]

    Johnson N J, Korinek A, Dong C, van Veggel F C J M 2012 J. Am. Chem. Soc. 134 11068

    [9]

    Nyk M, Kumar R, Ohulchanskyy T Y, Flask C A, Prasad P N 2012 Chem. Eur. J. 18 5558

    [10]

    Zhang F, Che R C, Li X M, Yao C, Yang J P, Shen D K, Hu P, Li W, Zhao D Y 2012 Nano Lett. 12 2852

    [11]

    Zheng W, Tu D T, Liu Y S, Luo W Q, Ma E, Zhu H M, Chen X Y 2014 Sci. Sin.:Chim. 44 168(in Chinese)[郑伟, 涂大涛, 刘永升, 罗文钦, 马恩, 朱浩淼, 陈学元2014中国科学:化学44 168]

    [12]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343

    [13]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [14]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [15]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [16]

    Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M 2011 J. Lumin. 131 423

    [17]

    Xu C L, Wang J G, Zhang X Y 2015 Acta Phys.-Chim. Sin. 31 2183(in Chinese)[徐春龙, 王晋国, 张翔宇2015物理化学学报31 2183]

    [18]

    Sun J S, Li S W, Shi L L, Zhou T M, Li X P, Zhang J S, Cheng L H, Chen B J 2015 Acta Phys. Sin. 64 243301 (in Chinese)[孙佳石, 李树伟, 石琳琳, 周天民, 李香萍, 张金苏, 程丽红, 陈宝玖2015物理学报64 243301]

    [19]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [20]

    Zhang X Y, Wang M Q, Ding J J, Gao D L, Shi Y H, Song X H 2012 Crystengcomm 14 8357

    [21]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成2015物理学报64 138101]

    [22]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [23]

    Chatterjeea D K, Rufaihaha A J, Zhang Y 2008 Biomaterials 29 937

    [24]

    Shen J, Chen G, Vu A M, Fan W, Bilsel O S, Chang C C, Han G 2013 Adv. Opt. Mater. 1 644

    [25]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano 7 7200

    [26]

    Xie X J, Gao N Y, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608

    [27]

    Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N 2014 Adv. Mater. 26 2831

    [28]

    Li X M, Wang R, Zhang F, Zhou L, Shen D K, Yao C, Zhao D Y 2013 Sci. Rep. 3 3536

    [29]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Tian D P, Gao D L, Chong B, Liu X Z 2015 Dalton Trans. 44 4133

    [31]

    Wang J, Wang F, Wang C, Liu Z, Liu X G 2011 Angew. Chem. Int. Ed. 50 10369

    [32]

    Gao D L, Zhang X Y, Gao W 2012 J. Appl. Phys. 111 033505

    [33]

    Gao D L, Tian D, Xiao G, Chong B, Yu G, Pang Q 2015 Opt. Lett. 40 3580

    [34]

    Zhang X Y, Gao D L, Li L 2010 J. Appl. Phys. 107 123528

    [35]

    Gao D L, Zheng H R, Tian Y, Cui M, Lei Y, He E J, Zhang X S 2010 J. Nanosci. Nanotechnol. 10 7694

    [36]

    Gao D L, Tian D P, Chong B, Li L, Zhang X Y 2016 J. Alloys Compd. 678 212

    [37]

    Zheng H R, Gao D L, Zhang X Y, He E J, Zhang X S 2008 J. Appl. Phys. 104 3506

    [38]

    Pollnau M, Gamelin D R, Lthi S R, Gdel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [39]

    Wang F, Liu X 2009 Chem. Soc. Rev. 38 976

    [40]

    Pan Z, Morgan S H, Dyer K, Ueda A, Liu H 1996 J. Appl. Phys. 79 8906

  • [1] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控. 物理学报, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [2] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [3] 续卓, 郭竞渊, 熊正烨, 唐强, 高沐. 掺Tm3+和Tb3+的LiMgPO4磷光体的发光光谱与能量转移. 物理学报, 2021, 70(16): 167801. doi: 10.7498/aps.70.20210357
    [4] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211438
    [5] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] 张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽. 基质材料对Yb3+浓度调控的上转换荧光红绿比的影响. 物理学报, 2018, 67(8): 084203. doi: 10.7498/aps.67.20171894
    [7] 张存波, 闫涛, 杨志强, 任伟涛, 朱占平. 频率对半导体器件热击穿影响的理论模型. 物理学报, 2017, 66(1): 018501. doi: 10.7498/aps.66.018501
    [8] 孙华娟, 颜晓红, 郝学元. 多值数据的自适应脉冲宽度调制预加重方法. 物理学报, 2015, 64(1): 018402. doi: 10.7498/aps.64.018402
    [9] 郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究. 物理学报, 2013, 62(20): 200503. doi: 10.7498/aps.62.200503
    [10] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [11] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [12] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [13] 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈 健, 晋云霞, 赵元安, 邵建达, 范正修. 多层介质膜脉冲宽度压缩光栅与超短脉冲作用时的性能分析. 物理学报, 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [14] 谭 浩, 宋 峰, 苏 静, 商美茹, 付 博, 张光寅, 程振祥, 陈焕矗. Er3+,Tm3+共掺的NaY(WO4)2晶体的光谱分析和上转换发光. 物理学报, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [15] 毛艳丽, 赵志伟, 邓佩珍, 干福熹. Yb:FAP和Yb:C3S2-FAP晶体光谱的温度特性和选择激发. 物理学报, 2004, 53(5): 1524-1528. doi: 10.7498/aps.53.1524
    [16] 陈树琪, 刘智波, 周文远, 田建国, 臧维平, 宋 峰, 张春平. 克尔介质中脉冲宽度对瞬态热光非线性效应的影响. 物理学报, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [17] 罗向东, 边历峰, 徐仲英, 罗海林, 王玉琦, 王建农, 葛惟琨. GaAs1-xSbx/GaAs单量子阱的光学特性研究. 物理学报, 2003, 52(7): 1761-1765. doi: 10.7498/aps.52.1761
    [18] 尹 民, J.C. KRUPA. 光谱探针法确定Eu3+:ThO2的格位对称性及选择激发下样品的光致发光研究. 物理学报, 2000, 49(9): 1859-1866. doi: 10.7498/aps.49.1859
    [19] 陈述春, 戴凤妹. 掺Nd3+激光玻璃的激光窄线选择激发. 物理学报, 1981, 30(4): 497-502. doi: 10.7498/aps.30.497
    [20] 林金谷, 刘承惠, 朱振和, 赖瑞生, 霍崇儒. 用非共线二次谐波法实现对锁模激光器超短脉冲宽度的测定. 物理学报, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
计量
  • 文章访问数:  3092
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-16
  • 修回日期:  2016-07-23
  • 刊出日期:  2016-10-05

NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性

  • 1. 长安大学理学院, 西安 710064;
  • 2. 西安建筑科技大学理学院, 西安 710055
  • 通信作者: 张翔宇, xyzhang@chd.edu.cn
    基金项目: 国家自然科学基金(批准号:51101022)、陕西省青年科技新星项目(批准号:2015KJXX-33)、陕西省自然科学基金(批准号:2014JQ1008,2014JM2-5066)和中央高校基本科研业务费(2013G1121085,310812152001)资助的课题.

摘要: 基于频域和时域的光谱学分析,系统地研究了Tm3+掺杂的NaYF4纳米棒的荧光选择输出特性及荧光输出与激光脉冲宽度、激发波长、抽运功率及环境温度的依赖关系.结果表明:与其他因素相比,输出光色强烈地依赖于激光脉宽.通过合适的脉宽激光激发,在NaYF4:0.5 mol% Tm3+纳米棒中获得了强烈的单带近红外荧光发射,该波段荧光在深层组织成像方面具有极大应用优势.基于多声子无辐射弛豫理论和荧光动力学过程,揭示了脉冲宽度调控的单带近红外荧光的输出机理,其机理为多声子弛豫辅助的下转换荧光和激光脉宽调制的上转换荧光之间的竞争,该研究为光谱调控提供了新的理论依据和途径.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回