搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频域电磁场的微波器件微放电阈值快速粒子模拟

王洪广 翟永贵 李记肖 李韵 王瑞 王新波 崔万照 李永东

引用本文:
Citation:

基于频域电磁场的微波器件微放电阈值快速粒子模拟

王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东

Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions

Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong
PDF
导出引用
  • 提出了一种利用频域电磁场快速计算微波器件微放电阈值的粒子模拟方法.首先通过CST微波工作室频域求解器获得微波器件中频域电磁场分布,在微放电过程模拟时将其转换到时域,再采用Boris算法求解电磁场中的电子运动,然后判断电子是否与三角面片边界相交,进行二次电子发射处理.变化输入功率,经过系列粒子模拟后,根据电子数目随时间的变化曲线确定微放电阈值.采用该方法分别对平行平板和同轴传输线微波器件的微放电阈值进行模拟计算,并与CST粒子工作室的模拟结果进行对比.结果表明,两者获得的阈值基本一致,但本方法的计算效率提高了12个数量级.
    In order to compute the multipactor thresholds of microwave devices with high efficiency and precision,a novel fast particle-in-cell (PIC) method is proposed,which takes advantage of the frequency-domain (FD) electromagnetic field solver of CST Microwave Studio (MWS).At the initial stage of multipactor (when there are not many electrons in the device),the self-consistent field generated by the electrons is much smaller than the applied electromagnetic field. Therefore it can be ignored in calculating the multipactor threshold and this will significantly reduce the computation burden.During simulations of multipactor process,the FD field pre-calculated by CST MWS is converted into timedomain (TD) scaling with the square root of the input power.Then the electron motion is investigated by Boris algorithm.When the electrons hit the boundaries of the simulation region,where triangular facets from CST are used for discretization,the secondary electrons will be emitted.After a series of simulations with variable input powers,the multipactor threshold is determined according to time evolution of the electron number.The multipactor thresholds in a parallel plate and a coaxial transmission line are investigated,and used as relevant verifications.Compared with the CST Particle Studio (PS),the fast method obtains almost the same thresholds,while the computational efficiency is improved by more than one order of magnitude.Since the self-consistent field generated by the electrons is ignored in the fast method and it is considered in CST PS,the results validate that the self-consistent field can be ignored in calculating the multipactor threshold.Finally,taking for example a parallel plate transmission line and a stepped impedance transformer,we study the effect of the number of initial macro-particles on the calculation precision.When the initial particles are so few that they can hardly reflect the randomness of the multipactor process,a higher calculated value will be resulted in.With the increase of the number of initial macro-particles,the calculated multipactor threshold is lower and more accurate.It is convergent when the number reaches about 2000 for the parallel plate transmission line and 4000 for the stepped impedance transformer,respectively.Taking into account other microwave devices with more complex electromagnetic field distribution,in order to ensure precision,it is recommended to select the number of initial macro-particles to be 8000.In addition,although CST MWS is used to obtain the electromagnetic field and boundary information in this paper,of course,other electromagnetic softwares (such as HFSS) can also be adopted as an alternative.
      通信作者: 李永东, leyond@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1537210)和空间微波技术重点实验室基金(批准号:9140C530101150C53011)资助的课题.
      Corresponding author: Li Yong-Dong, leyond@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1537210) and the National Key Laboratory of Science and Technology on Space Microwave of China (Grant No. 9140C530101150C53011).
    [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]

  • [1]

    Vaughan J R M 1988 IEEE Trans. Electron Dev. 35 1172

    [2]

    Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [3]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Nieter C, Stoltz P H, Roark C, Mahalingam S 2010 AIP Conf. Proc. 1299 399

    [5]

    Gill E W B, Engel A V 1948 Proc. Roy. Soc. London A 192 446

    [6]

    Vdovicheva N K, Sazontov A G, Semenov V E 2004 Radiophys. Quantum Electron. 47 580

    [7]

    Anza S, Vicente C, Gil J, Boria V E, Gimeno B, Raboso D 2010 Phys. Plasmas 17 062110

    [8]

    Sazontov A G, Sazontov V A, Vdovicheva N K 2008 Contrib. Plasma Phys. 48 331

    [9]

    Udiljak R, Anderson D, Lisak M, Semenov V E, Puech J 2007 Phys. Plasmas 14 033508

    [10]

    Lin S, Wang H G, Li Y, Liu C L, Zhang N, Cui W Z, Neuber A 2015 Phys. Plasmas 22 082114

    [11]

    Kishek R A, Lau Y Y 1998 Phy. Rev. Lett. 80 193

    [12]

    Birdsall C K, Langdon A B 1984 Plasma Physics via Computer Simulation (New York:McGraw Hill Higher Education) pp1-400

    [13]

    Goplen B, Ludeking L, Smithe D, Warren G 1995 Comput. Phys. Commun. 87 54

    [14]

    Nieter C, Cary J R 2004 J. Comput. Phys. 196 448

    [15]

    Computer Simulation Technology (CST) Center 2012 Framingham M A 2009 High Power Laser and Particle Beams 21 1866 (in Chinese)[李永东, 王洪广, 刘纯亮,张殿辉,王建国,王玥2009强激光与粒子束21 1866]

    [16]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [17]

    You J W, Wang H G, Zhang J F, Tan S R, Cui T J 2014 IEEE Trans. Electron Dev. 61 1546

    [18]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese)[董烨, 董志伟, 杨文渊2011强激光与粒子束23 454]

    [19]

    Liu L Q, Liu D G, Wang X Q, Peng K, Yang C 2012 High Power Laser and Particle Beams 24 1980 (in Chinese)[刘腊群, 刘大刚, 王学琼, 彭凯, 杨超2012强激光与粒子束24 1980]

    [20]

    Boris J P 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasmas Washington, USA, November 2-3, 1970 p3

    [21]

    Möller T, Trumbore B 1997 J. Graph. Tool. 2 21

    [22]

    Vaughan J R M 1989 IEEE Trans. Electron Dev. 36 1963

    [23]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. 5 124404

    [24]

    Li Y D, Yan Y J, Lin S, Wang H G, Liu C L 2014 Acta Phys. Sin. 63 047902 (in Chinese)[李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮2014物理学报63 047902]

    [25]

    Liu L, Li Y D, Wang R, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)[刘雷, 李永东, 王瑞, 崔万照, 刘纯亮2013物理学报62 025201]

  • [1] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响. 物理学报, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [2] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [3] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [4] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [5] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化. 物理学报, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [6] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [7] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [8] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [9] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [10] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [11] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [12] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [13] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [14] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [15] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [16] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  3104
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-19
  • 修回日期:  2016-09-04
  • 刊出日期:  2016-12-05

基于频域电磁场的微波器件微放电阈值快速粒子模拟

  • 1. 西安交通大学, 电子物理与器件教育部重点实验室, 西安 710049;
  • 2. 北京真空电子技术研究所, 北京 100015;
  • 3. 中国空间技术研究院西安分院, 空间微波技术重点实验室, 西安 710100
  • 通信作者: 李永东, leyond@mail.xjtu.edu.cn
    基金项目: 国家自然科学基金(批准号:U1537210)和空间微波技术重点实验室基金(批准号:9140C530101150C53011)资助的课题.

摘要: 提出了一种利用频域电磁场快速计算微波器件微放电阈值的粒子模拟方法.首先通过CST微波工作室频域求解器获得微波器件中频域电磁场分布,在微放电过程模拟时将其转换到时域,再采用Boris算法求解电磁场中的电子运动,然后判断电子是否与三角面片边界相交,进行二次电子发射处理.变化输入功率,经过系列粒子模拟后,根据电子数目随时间的变化曲线确定微放电阈值.采用该方法分别对平行平板和同轴传输线微波器件的微放电阈值进行模拟计算,并与CST粒子工作室的模拟结果进行对比.结果表明,两者获得的阈值基本一致,但本方法的计算效率提高了12个数量级.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回