搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷速对液态金属Mg凝固过程中微观结构演变的影响

吴博强 刘海蓉 刘让苏 莫云飞 田泽安 梁永超 关绍康 黄昌雄

引用本文:
Citation:

冷速对液态金属Mg凝固过程中微观结构演变的影响

吴博强, 刘海蓉, 刘让苏, 莫云飞, 田泽安, 梁永超, 关绍康, 黄昌雄

Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg

Wu Bo-Qiang, Liu Hai-Rong, Liu Rang-Su, Mo Yun-Fei, Tian Ze-An, Liang Yong-Chao, Guan Shao-Kang, Huang Chang-Xiong
PDF
导出引用
  • 采用分子动力学方法对不同冷速下液态金属镁(Mg)快速凝固过程中的微观结构演变进行了模拟研究.并采用能量-温度(E-T)曲线、双体分布函数、Honeycutt-Andersen键型指数法、原子团簇类型指数法(CTIM-3)以及三维可视化等方法系统地考察了凝固过程中微观结构演变与相转变过程.结果发现:在以冷速为11011K/s的凝固过程中,亚稳态bcc相优先形成,随后大量解体,其变化规律符合Ostwald规则,系统最终形成以hcp结构为主体与fcc结构共存,中间还夹杂部分bcc结构的致密晶体结构.在11012K/s冷速下,结晶过程呈现迟缓现象,形成bcc结构的初始温度降低,系统形成以hcp居多、与bcc和fcc三相共存的结构,且因相互竞争、相互制约而导致不易形成粗大的晶粒结构.而在11013K/s冷速下,系统则形成以1551,1541,1431键型为主的多种非晶态基本原子团组成的非晶态结构.此外,在冷速11012与11013K/s之间的确存在一个形成非晶态结构的临界冷速.
    Magnesium metal and its alloys are widely used in industry,especially,as biodegradable materials are highly suitable for biomedical applications.Since macroscopic properties and service behaviors of materials are mainly determined by their microstructures,it is very important to in depth understand the melting structure of pure magnesium and its evolution process in solidification process.In this work,a molecular dynamic simulation studyis performed with embedded atom method potential at different cooling rates to investigate the rapid solidification process of liquid magnesium,and the microstructure evolution and phase transition mechanisms are systematically analyzed by using E-T curves,pair distribution function g (r),Honeycutt-Anderson (HA) bond-type index method,cluster-type index method (CTIM-3) and three-dimentional (3D) visualization method,respectively.It is found that the cooling rate plays an important role in the evolution of microstructures,especially;from HA bond index method,CTIM-3 and 3D visualization method,the microstructure details of crystalline or amorphous structures in the system are displayed quite clearly with temperature decreasing.Meanwhile,it can be easily found how some basic clusters interconnect to form a larger one in the system. For short,some local configurations under different conditions at four typical temperatures are also given to show the difference in microstructure on a relatively large scale.At a lower cooling rate of 11011 K/s,the evolution of metastable bcc structure is obviously consistent with the Ostwald's step rule in the system,meaning that the bcc structure is first formed preferentially and then dissociated largely,and eventually the stable crystalline structures are formed mainly with the predominant hcp structure and fcc structure,and coexisting along with remaining partial bcc structure.At a middle cooling rate of 11012 K/s,the crystallization process is slower,the bcc initially is formed at lower temperature, suggesting that the crystalline process is postponed,and the coexisting structures is still formed with the predominant hcp structure and fcc,bcc structures,but lacking in the larger grains,due to the competitions among the hcp,fcc and bcc structures.Finally,for a higher cooling rate of 11013 K/s,amorphous magnesium is formed with basic amorphous clusters characterized by 1551,1441 and 1431 bond types and there is not a predominant structure,although a small number of medium or long range orders come out.In addition,there surely exists a critical cooling rate for forming amorphous structures in a range of 11012-11013 K/s.From the evolution of bcc,it is also suggested that short range orders in super-cooling liquid give birth to bcc structure and the process can be avoided by simply speeding up the cooling rate to a critical one.
      通信作者: 刘海蓉, liuhairong@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51102090)、新世纪优秀人才支持计划(批准号:NCET-12-0170)、湖南省自然科学基金(批准号:2016JJ2023)资助的课题.
      Corresponding author: Liu Hai-Rong, liuhairong@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51102090), the Program for New Century Excellent Talents in University, China(Grant No. NCET-12-0170) and the Natural Science Foundation of Hunan Province, China(Grant No. 2016JJ2023).
    [1]

    Ostwald W 1897 Phys. Chem. 22 289

    [2]

    Alexander S, McTague J 1978 Phys. Rev. Lett. 41 702

    [3]

    Klein W, Leyvraz F 1986 Phys. Rev. Lett. 57 2845

    [4]

    Sun D Y, Asta M, Hoyt J J, Mendelev M I, Srolovitz D J 2004 Phys. Rev. B 69 020102

    [5]

    Hoyt J J, Asta M, Sun D Y 2006 Phil. Mag. 86 3651

    [6]

    Lutsko J F, Baus M 1990 Phys. Rev. Lett. 64 761

    [7]

    Xie W J, Cao C D, Lu Y J, Wei B 2011 J. Mater. Sci. 46 6203

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 Acta Phys. Sin. 57 3653 (in Chinese)[周丽丽, 刘让苏, 侯朝阳, 田泽安, 林艳, 刘全慧2008物理学报57 3653]

    [9]

    Debela T T, Wang X D, Cao Q P, Zhang D X, Zhu J J, Jiang J Z 2015 J. Appl. Phys. 117 114905

    [10]

    Liu R S, Li J Y, Dong K J, Zheng C X, Liu H R 2002 Mater. Sci. Eng. B 94 141

    [11]

    Liu R S, Liu F X, Dong K J, Zheng C X, Liu H R, Peng P 2004 Acta Phys. Chim. Sin. 20 1093 (in Chinese)[刘让苏, 刘凤祥, 董科军, 郑采星, 刘海蓉, 彭平2004物理化学学报20 1093]

    [12]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612

    [13]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2002 Chin. Phys. Lett. 19 1144

    [14]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [15]

    Ganesh P, Widom M 2006 Phys. Rev. B 74 134205

    [16]

    Plimpton S [2016-8-18]

    [17]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116

    [18]

    Waseda Y 1980 The Structure of Non-crystalline Materials:Liquid and Amorphous Solids (New York:McGrawHill) p268

    [19]

    Qi D W, Wang S 2009 Chin. Phys. B 18 4949

    [20]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese)[耿浩然, 孙春雷, 杨中喜, 王瑞, 吉蕾蕾2006物理学报55 1320]

    [21]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [22]

    Mo Y F, Liu R S, Liang Y C, Zhang H T, Tian Z A, Hou Z Y, Liu H R, Zhou L L, Peng P, Gao H T 2015 Comput. Mater. Sci. 98 1

    [23]

    Deng Y, Liu R S, Zhou Q Y, Liu H R, Liang Y C, Mo Y F, Zhang H T, Tian Z A, Peng P 2013 Acta Phys. Sin. 62 166101 (in Chinese)[邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平2013物理学报62 166101]

  • [1]

    Ostwald W 1897 Phys. Chem. 22 289

    [2]

    Alexander S, McTague J 1978 Phys. Rev. Lett. 41 702

    [3]

    Klein W, Leyvraz F 1986 Phys. Rev. Lett. 57 2845

    [4]

    Sun D Y, Asta M, Hoyt J J, Mendelev M I, Srolovitz D J 2004 Phys. Rev. B 69 020102

    [5]

    Hoyt J J, Asta M, Sun D Y 2006 Phil. Mag. 86 3651

    [6]

    Lutsko J F, Baus M 1990 Phys. Rev. Lett. 64 761

    [7]

    Xie W J, Cao C D, Lu Y J, Wei B 2011 J. Mater. Sci. 46 6203

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P 2008 Acta Phys. Sin. 57 3653 (in Chinese)[周丽丽, 刘让苏, 侯朝阳, 田泽安, 林艳, 刘全慧2008物理学报57 3653]

    [9]

    Debela T T, Wang X D, Cao Q P, Zhang D X, Zhu J J, Jiang J Z 2015 J. Appl. Phys. 117 114905

    [10]

    Liu R S, Li J Y, Dong K J, Zheng C X, Liu H R 2002 Mater. Sci. Eng. B 94 141

    [11]

    Liu R S, Liu F X, Dong K J, Zheng C X, Liu H R, Peng P 2004 Acta Phys. Chim. Sin. 20 1093 (in Chinese)[刘让苏, 刘凤祥, 董科军, 郑采星, 刘海蓉, 彭平2004物理化学学报20 1093]

    [12]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612

    [13]

    Hou Z Y, Liu L X, Liu R S, Tian Z A 2002 Chin. Phys. Lett. 19 1144

    [14]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [15]

    Ganesh P, Widom M 2006 Phys. Rev. B 74 134205

    [16]

    Plimpton S [2016-8-18]

    [17]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116

    [18]

    Waseda Y 1980 The Structure of Non-crystalline Materials:Liquid and Amorphous Solids (New York:McGrawHill) p268

    [19]

    Qi D W, Wang S 2009 Chin. Phys. B 18 4949

    [20]

    Geng H R, Sun C J, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese)[耿浩然, 孙春雷, 杨中喜, 王瑞, 吉蕾蕾2006物理学报55 1320]

    [21]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [22]

    Mo Y F, Liu R S, Liang Y C, Zhang H T, Tian Z A, Hou Z Y, Liu H R, Zhou L L, Peng P, Gao H T 2015 Comput. Mater. Sci. 98 1

    [23]

    Deng Y, Liu R S, Zhou Q Y, Liu H R, Liang Y C, Mo Y F, Zhang H T, Tian Z A, Peng P 2013 Acta Phys. Sin. 62 166101 (in Chinese)[邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平2013物理学报62 166101]

计量
  • 文章访问数:  2350
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-18
  • 修回日期:  2016-10-06
  • 刊出日期:  2017-01-05

冷速对液态金属Mg凝固过程中微观结构演变的影响

  • 1. 湖南大学材料科学与工程学院, 长沙 410082;
  • 2. 湖南大学物理与微电子科学学院, 长沙 410082;
  • 3. 贵州大学大数据与信息工程学院, 贵阳 550025;
  • 4. 郑州大学材料科学与工程学院, 郑州 450001
  • 通信作者: 刘海蓉, liuhairong@hnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51102090)、新世纪优秀人才支持计划(批准号:NCET-12-0170)、湖南省自然科学基金(批准号:2016JJ2023)资助的课题.

摘要: 采用分子动力学方法对不同冷速下液态金属镁(Mg)快速凝固过程中的微观结构演变进行了模拟研究.并采用能量-温度(E-T)曲线、双体分布函数、Honeycutt-Andersen键型指数法、原子团簇类型指数法(CTIM-3)以及三维可视化等方法系统地考察了凝固过程中微观结构演变与相转变过程.结果发现:在以冷速为11011K/s的凝固过程中,亚稳态bcc相优先形成,随后大量解体,其变化规律符合Ostwald规则,系统最终形成以hcp结构为主体与fcc结构共存,中间还夹杂部分bcc结构的致密晶体结构.在11012K/s冷速下,结晶过程呈现迟缓现象,形成bcc结构的初始温度降低,系统形成以hcp居多、与bcc和fcc三相共存的结构,且因相互竞争、相互制约而导致不易形成粗大的晶粒结构.而在11013K/s冷速下,系统则形成以1551,1541,1431键型为主的多种非晶态基本原子团组成的非晶态结构.此外,在冷速11012与11013K/s之间的确存在一个形成非晶态结构的临界冷速.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回