搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于社交影响力和平均场理论的信息传播动力学模型

肖云鹏 李松阳 刘宴兵

引用本文:
Citation:

一种基于社交影响力和平均场理论的信息传播动力学模型

肖云鹏, 李松阳, 刘宴兵

An information diffusion dynamic model based on social influence and mean-field theory

Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing
PDF
导出引用
  • 在线社会网络中,信息传播蕴含着复杂的动力学成因.本文将传染病模型与社交影响力要素相结合,并针对影响力度量中主要研究静态网络拓扑结构、忽略个体行为特征的问题,提出一种基于动态节点行为和用户影响力的信息传播动力学模型,旨在量化影响力强度,为研究信息扩散过程中不同用户群体状态转变提供理论依据.首先,在网络拓扑结构和用户行为两方面,提取个人记忆和用户交互两个表征,分析影响力形成的内因和外因两个动力学成因,并基于多元线性回归模型,提出一种度量用户社会影响力的方法.其次,在传统传染病SIR(susceptible-infected-recovered)模型基础上,结合信息扩散与传染病蔓延相似的传播机理,综合考虑信息传播的多源并发性和双向性,引入影响力因子,利用平均场理论改进得到一种基于用户影响力的信息传播模型.实验表明,该模型能有效地解释在线社会网络中信息传播的动力学原因,感知社会网络中信息传播演化态势.
    With the development of online social networks, they rapidly become an ideal platform for information about social information diffusion, commodity marketing, shopping recommendation, opinion expression and social consensus. The social network information propagation has become a research hotspot correspondingly. Meanwhile, information diffusion contains complex dynamic genesis in online social networks. In view of the diversity of information transmission, the efficiency of propagation and the convenience of interaction, it is very important to regulate the accuracy, strengthen the public opinion monitoring and formulating the information control strategy. The purpose of this study is to quantify the intensity of the influence, especially provides a theoretical basis for studying the state transition of different user groups in the evolution process. As existing epidemic model paid less attention to influence factors and previous research about influence calculation mainly focused on static network topology but ignored individual behavior characteristics, we propose an information diffusion dynamics model based on dynamic user behaviors and influence. Firstly, according to the multiple linear regression model, we put forward a method to analyze internal and external factors for influence formation from two aspects:personal memory and user interaction. Secondly, for a similar propagation mechanism of information diffusion and epidemics spreading, in this paper we present an improved SIR model based on mean-field theory by introducing influence factor. The contribution of this paper can be summarized as follows. 1) For the influence quantification, different from the current research work that mainly focuses on network structure, we integrate the internal factors and external factors, and propose a user influence evaluation method based on the multiple linear regression model. The individual memory principle is analyzed by combining user attributes and individual behavior. User interaction is also studied by using the shortest path method in graph theory. 2) On modeling the information diffusion, by referring SIR model, we introduce the user influence factor as the parameter of the state change into the epidemic model. The mean-field theory is used to establish the differential equations. Subsequently, the novel information diffusion dynamics model and verification method are proposed. The method avoids the randomness of the artificial setting parameters within the model, and reveals the nature of multi-factors coupling in the information transmission. Experimental results show that the optimized model can comprehend the principle and information diffusion mechanism of social influence from a more macroscopic level. The study can not only explain the internal and external dynamics genesis of information diffusion, but also explore the behavioral characteristics and behavior laws of human. In addition, we try to provide theoretical basis for situation awareness and control strategy of social information diffusion.
      通信作者: 肖云鹏, xiaoyp@cqupt.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB329606)、国家自然科学基金(批准号:61272400)、重庆市青年人才项目(批准号:cstc2013kjrc-qnrc40004)、教育部-中国移动研究基金(批准号:MCM20130351)、重庆市研究生研究与创新项目(批准号:CYS14146)、重庆市教委科学计划项目(批准号:KJ1500425)和重庆邮电大学文峰基金(批准号:WF201403)资助的课题.
      Corresponding author: Xiao Yun-Peng, xiaoyp@cqupt.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB329606), the National Natural Science Foundation of China (Grant No. 61272400), the Chongqing Youth Innovative Talent Project, China (Grant No. cstc2013kjrc-qnrc40004), the Foundation of Ministry of Education of China and China Mobile (Grant No. MCM20130351), the Chongqing Graduate Research and Innovation Project, China (Grant No. CYS14146), the Science and Technology Research Program of the Chongqing Municipal Education Committee, China (Grant No. KJ1500425), the WenFeng Foundation of Chongqing University of Post and Telecommunications, China (Grant No. WF201403).
    [1]

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504 (in Chinese)[蔡萌, 杜海峰, Feldman M W 2014物理学报63 060504]

    [2]

    Zhou B, He Z, Jiang L L, Wang N X, Wang B H 2014 Sci. Rep. 4 7577

    [3]

    Huang J, Li C, Wang W Q, Shen H W, Li G, Cheng X Q 2014 Sci. Rep. 4 5334

    [4]

    Zheng M, L L, Zhao M 2013 Phys. Rev. E 88 012818

    [5]

    Chen D B, Huang S, Shang M S 2011 Comput. Sci. 38 118 (in Chinese)[陈端兵, 黄晟, 尚明生2011计算机科学38 118]

    [6]

    Chen D B, Gao H 2012 Chin. Phys. Lett. 29 048901

    [7]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [8]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese)[王超, 刘骋远, 胡远萍, 刘志宏, 马建峰2014物理学报63 180501]

    [9]

    Lu W, Chen W, Lakshmanan L V S 2015 Proceedings of the VLDB Endowment Hawaii, USA, August 31-September 4, 2015 p60

    [10]

    Elias Boutros K, Dilkina B, Song L 2014 Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York, USA, August 24-27, 2014 p1226

    [11]

    Singer Y 2012 Proceedings of the Fifth ACM International Conference on Web Search and Data Mining Washington, USA, February 8-12, 2012 p733

    [12]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [13]

    Montanari A, Saberi A 2010 Proc. Natl. Acad. Sci. 107 20196

    [14]

    Yuan X P, Xue Y K, Liu M X 2013 Chin. Phys. B 22 030207

    [15]

    Pastor-Satorras R, Castellano C, van Mieghe P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [16]

    Kempe D, Jon K, Éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24-27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79

    [18]

    Li C H, Tsai C C, Yang S Y 2014 Commun. Nonlinear Sci. 19 1042

    [19]

    Chen L, Sun J 2014 Physica A 410 196

    [20]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [21]

    Li T, Wang Y, Guan Z H 2014 Commun. Nonlinear Sci. 19 686

    [22]

    Xiong F, Wang X M, Cheng J J 2016 Chin. Phys. B 25 108904

    [23]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [24]

    Hu Q C, Zhang Y, Xu X H, Xing C X, Chen C, Chen X H 2015 Acta Phys. Sin. 64 190101 (in Chinese)[胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢2015物理学报64 190101]

    [25]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [26]

    Wu Y, Yang Y, Jiang F, Jin S, Xu J 2014 Physica A 416 467

    [27]

    Liben-Nowell D, Kleinberg J 2008 Proc. Natl. Acad. Sci. 105 4633

    [28]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [29]

    Myers S A, Zhu C, Leskovec J 2012 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Beijing, China, August 12-16, 2012 p33

    [30]

    Aral S, Walker D 2012 Science 337 337

    [31]

    La Fond T, Neville J 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, USA, April 26-30, 2010 p601

    [32]

    Li P, Zhang J, Xu X K, Small M 2012 Chin. Phys. Lett. 29 048903

    [33]

    Newman, M E J 2012 Nat. Phys. 8 25

    [34]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [35]

    Pedroche F, Moreno F, González A, Valencia A 2013 Math. Comput. Model 57 1891

  • [1]

    Cai M, Du H F, Feldman M W 2014 Acta Phys. Sin. 63 060504 (in Chinese)[蔡萌, 杜海峰, Feldman M W 2014物理学报63 060504]

    [2]

    Zhou B, He Z, Jiang L L, Wang N X, Wang B H 2014 Sci. Rep. 4 7577

    [3]

    Huang J, Li C, Wang W Q, Shen H W, Li G, Cheng X Q 2014 Sci. Rep. 4 5334

    [4]

    Zheng M, L L, Zhao M 2013 Phys. Rev. E 88 012818

    [5]

    Chen D B, Huang S, Shang M S 2011 Comput. Sci. 38 118 (in Chinese)[陈端兵, 黄晟, 尚明生2011计算机科学38 118]

    [6]

    Chen D B, Gao H 2012 Chin. Phys. Lett. 29 048901

    [7]

    Borge-Holthoefer J, Moreno Y 2012 Phys. Rev. E 85 026116

    [8]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese)[王超, 刘骋远, 胡远萍, 刘志宏, 马建峰2014物理学报63 180501]

    [9]

    Lu W, Chen W, Lakshmanan L V S 2015 Proceedings of the VLDB Endowment Hawaii, USA, August 31-September 4, 2015 p60

    [10]

    Elias Boutros K, Dilkina B, Song L 2014 Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining New York, USA, August 24-27, 2014 p1226

    [11]

    Singer Y 2012 Proceedings of the Fifth ACM International Conference on Web Search and Data Mining Washington, USA, February 8-12, 2012 p733

    [12]

    Liu J G, Lin J H, Guo Q, Zhou T 2016 Sci. Rep. 6 21380

    [13]

    Montanari A, Saberi A 2010 Proc. Natl. Acad. Sci. 107 20196

    [14]

    Yuan X P, Xue Y K, Liu M X 2013 Chin. Phys. B 22 030207

    [15]

    Pastor-Satorras R, Castellano C, van Mieghe P, Vespignani A 2015 Rev. Mod. Phys. 87 925

    [16]

    Kempe D, Jon K, Éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24-27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79

    [18]

    Li C H, Tsai C C, Yang S Y 2014 Commun. Nonlinear Sci. 19 1042

    [19]

    Chen L, Sun J 2014 Physica A 410 196

    [20]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [21]

    Li T, Wang Y, Guan Z H 2014 Commun. Nonlinear Sci. 19 686

    [22]

    Xiong F, Wang X M, Cheng J J 2016 Chin. Phys. B 25 108904

    [23]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [24]

    Hu Q C, Zhang Y, Xu X H, Xing C X, Chen C, Chen X H 2015 Acta Phys. Sin. 64 190101 (in Chinese)[胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢2015物理学报64 190101]

    [25]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [26]

    Wu Y, Yang Y, Jiang F, Jin S, Xu J 2014 Physica A 416 467

    [27]

    Liben-Nowell D, Kleinberg J 2008 Proc. Natl. Acad. Sci. 105 4633

    [28]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [29]

    Myers S A, Zhu C, Leskovec J 2012 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Beijing, China, August 12-16, 2012 p33

    [30]

    Aral S, Walker D 2012 Science 337 337

    [31]

    La Fond T, Neville J 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, USA, April 26-30, 2010 p601

    [32]

    Li P, Zhang J, Xu X K, Small M 2012 Chin. Phys. Lett. 29 048903

    [33]

    Newman, M E J 2012 Nat. Phys. 8 25

    [34]

    Barabási A L, Albert R, Jeong H 1999 Physica A 272 173

    [35]

    Pedroche F, Moreno F, González A, Valencia A 2013 Math. Comput. Model 57 1891

  • [1] 李鑫, 赵城利, 刘阳洋. 有限步传播范围期望指标判别节点传播影响力. 物理学报, 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [2] 张菊平, 郭昊明, 荆文君, 靳祯. 基于真实信息传播者的谣言传播模型的动力学分析. 物理学报, 2019, 68(15): 150501. doi: 10.7498/aps.68.20190191
    [3] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法. 物理学报, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [4] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] 胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢. 一种新的复杂网络影响力最大化发现方法. 物理学报, 2015, 64(19): 190101. doi: 10.7498/aps.64.190101
    [6] 王金龙, 刘方爱, 朱振方. 一种基于用户相对权重的在线社交网络信息传播模型. 物理学报, 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [7] 王小娟, 宋梅, 郭世泽, 杨子龙. 基于有向渗流理论的关联微博转发网络信息传播研究. 物理学报, 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [8] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究. 物理学报, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [9] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究. 物理学报, 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [10] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [11] 吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波. 基于平均场理论的微博传播网络模型. 物理学报, 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [12] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展. 物理学报, 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [13] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析. 物理学报, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [14] 熊熙, 胡勇. 基于社交网络的观点传播动力学研究. 物理学报, 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [15] 宋玉蓉, 蒋国平, 徐加刚. 一种基于元胞自动机的自适应网络病毒传播模型. 物理学报, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [16] 张彦超, 刘云, 张海峰, 程辉, 熊菲. 基于在线社交网络的信息传播模型. 物理学报, 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [17] 郑容森, 吕集尔, 朱留华, 陈时东, 庞寿全. 主干道交通流的路口效应. 物理学报, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [18] 李明杰, 吴晔, 刘维清, 肖井华. 手机短信息传播过程和短信息寿命研究. 物理学报, 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
    [19] 王延, 郑志刚. 无标度网络上的传播动力学. 物理学报, 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [20] 谢彦波, 汪秉宏, 全宏俊, 杨伟松, 王卫宁. EZ模型中的有限尺寸效应. 物理学报, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
计量
  • 文章访问数:  4158
  • PDF下载量:  769
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-02-05

一种基于社交影响力和平均场理论的信息传播动力学模型

  • 1. 重庆邮电大学, 网络与信息安全技术重庆市工程实验室, 重庆 400065
  • 通信作者: 肖云鹏, xiaoyp@cqupt.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2013CB329606)、国家自然科学基金(批准号:61272400)、重庆市青年人才项目(批准号:cstc2013kjrc-qnrc40004)、教育部-中国移动研究基金(批准号:MCM20130351)、重庆市研究生研究与创新项目(批准号:CYS14146)、重庆市教委科学计划项目(批准号:KJ1500425)和重庆邮电大学文峰基金(批准号:WF201403)资助的课题.

摘要: 在线社会网络中,信息传播蕴含着复杂的动力学成因.本文将传染病模型与社交影响力要素相结合,并针对影响力度量中主要研究静态网络拓扑结构、忽略个体行为特征的问题,提出一种基于动态节点行为和用户影响力的信息传播动力学模型,旨在量化影响力强度,为研究信息扩散过程中不同用户群体状态转变提供理论依据.首先,在网络拓扑结构和用户行为两方面,提取个人记忆和用户交互两个表征,分析影响力形成的内因和外因两个动力学成因,并基于多元线性回归模型,提出一种度量用户社会影响力的方法.其次,在传统传染病SIR(susceptible-infected-recovered)模型基础上,结合信息扩散与传染病蔓延相似的传播机理,综合考虑信息传播的多源并发性和双向性,引入影响力因子,利用平均场理论改进得到一种基于用户影响力的信息传播模型.实验表明,该模型能有效地解释在线社会网络中信息传播的动力学原因,感知社会网络中信息传播演化态势.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回