搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

色散对双晶交叉偏振滤波输出特性的影响

耿易星 李荣凤 赵研英 王大辉 卢海洋 颜学庆

引用本文:
Citation:

色散对双晶交叉偏振滤波输出特性的影响

耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆

Influences of quadratic spectral phase on characteristics of two crystal cross-polarized generation with femtosecond pulses

Geng Yi-Xing, Li Rong-Feng, Zhao Yan-Ying, Wang Da-Hui, Lu Hai-Yang, Yan Xue-Qing
PDF
导出引用
  • 在北京大学超小型激光等离子体加速器系统上,通过压缩器对激光脉冲引入色散,研究了色散对双晶交叉偏振滤波(XPW)输出特性的影响.结果显示,随着正负色散的引入,XPW功率会减小、输出光谱带宽也会变窄、输出光谱中心波长会发生蓝移和红移.与此同时,正负色散对于三者的影响具有不对称性,负色散相对于正色散会更快减小XPW功率和输出光谱带宽.因此,对双晶XPW输出特性而言,正色散的影响要小于负色散.该结果对双晶XPW技术在高对比度超强激光中的应用提供了重要的实验数据.
    The rapid developments of ultra-intense and ultra-short laser offer the possibility to study laser driven ion acceleration with using solid density target. However, the prepulse and amplified spontaneous emission generated in the amplification can create preplasma at the target front by heating, melting and evaporating a portion of a solid density. The main pulse then interacts with the preplasma, which would be harmful to laser ion acceleration. Therefore, many methods have been developed to enhance the temporal contrast of high power laser system, such as saturable absorber, cross polarized wave generation (XPW) and plasma mirror. With many advantages, such as high conversion efficiency, introducing neither spatial nor spectral distortions, and easy setup compared with other mechanisms, XPW has been used to clean the femtosecond laser system. Besides that, the spectrum of the XPW pulse could be broadened by 3 times under the best condition compared with the initial spectrum. It can solve the spectrum narrowing problem during the laser amplification to obtain ultra-short femtosecond laser pulse. Here, we experimentally investigate the output power, spectrum bandwidth and center wavelength shift of the generated cross-polarized wave according to the input pulse quadratic spectral phase. The femtosecond laser pulse in compact laser plasma accelerator system at Peking University is used to investigate the role of quadratic spectral phase in characterizing the two crystal cross-polarized generation. The Ti:Sapphire-based laser system has a central wavelength of 798 nm and bandwidth of 35.5 nm which allows the pulse to be compressed down to 40 fs duration (FWHM). Typical the input pulse energy of XPW is 150 upJ and the laser system operates well at 1 kHz repetition rate. The quadratic spectral phase can be increased by changing the position of compressor grating. The conversion efficiency, spectrum bandwidth and the central wavelength shift by changing the quadratic spectral phase are measured. The conversion efficiency is 17% when quadratic spectral phase 2=0, and decreases as quadratic spectral phase increases. The rapid decrease is caused by negative quadratic spectral phase. The spectrum bandwidth is 62 nm under the optimum condition, and the broadening effect exists when quadratic spectral phase is in a range of -280 fs2 2 1400 fs2. It is slowly blue-shifted when 20 and stays at 772 nm when 21000 fs2. It starts to be red-shifted when 20 and stays at 806 nm finally. In conclusion, with the increase of quadratic spectral phase, we observe the effects of conversion efficiency and spectrum bandwidth and the shift of central wavelength. Moreover, the influences of positive and negative quadratic spectral phase on characteristics of XPW are different. Our result shows that the negative quadratic spectral phaseis more effective at reducing the conversion efficiency and spectrum bandwidth than the positive one.
      通信作者: 赵研英, zhaoyanying@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504009)和国家重大科学仪器设备开发专项(专项号:2012YQ030142)资助的课题.
      Corresponding author: Zhao Yan-Ying, zhaoyanying@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11504009) and the National Grand Instrument Project,China (Grant No.2012YQ030142).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Hiroyuki D, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Corde S, TaPhuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1

    [5]

    Ivanov V V, Maksimchuk A, Mourou G 2003 Appl. Opt. 42 7231

    [6]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov Y A, Kampfer T, Schulze K S, Uschmann I, Woolsey N C 2014 Phys. Plasmas 21 043106

    [7]

    Timur Z E, James K K, Atsushi S, Toshimasa M, Masaharu N, Kei K, Hideo N, Katsunobu N, Akito S, Hideyuki K, Tatsufumi N, Yuji F, Hajime O, Alexander S P, Akifumi Y, Mamiko N, Hiromitsu K, Kiminori K, Masaki K, Sergei V B 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 745 150

    [8]

    Yabuuchi T, Mishra R, McGuffey C, Qiao B, Wei M S, Sawada H, Sentoku Y, Ma T, Higginson D P, Akli K U, Batani D, Chen H, Gizzi L A, Key M H, Mackinnon A J, McLean H S, Norreys P A, Patel P K, Stephens R B, Ping Y, Theobald W, Stoeckl C, Beg F N 2013 New J. Phys. 15 015020

    [9]

    Jeffrey W, Charles G D 2004 Opt. Express 12 1383

    [10]

    Norihiko N, Atsushi M 2007 Opt. Lett. 32 3516

    [11]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, Etchepare J 2005 Opt. Lett. 30 8

    [12]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese)[刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 物理学报 59 7036]

    [13]

    Röde C, Heyer M, Behmke M, Kübel M, Jäckel O, Ziegler W, Ehrt D, Kaluza M C, Paulus G G 2011 Appl. Phys. B 103 295

    [14]

    Anna L, Tiberio C, Pascal D O, Fabrice R, Michel P, Fabien Q, Pascal M, Michel B, Hervé L, Philippe M 2007 Opt. Lett. 32 310

    [15]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 7

    [16]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [17]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X, Xu Z Z 2014 Opt. Commun. 313 175

    [18]

    Lureau F, Laux S, Casagrande O, Radier C, Chalus O, Caradec F, Simon-Boisson C 2012 Proc. SPIE 8235 823513

    [19]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84, 043106

    [20]

    Lliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 2

    [21]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Rousseau J P, Chaudet P, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2007 Appl. Phys. B 87 595

    [22]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese)[李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 物理学报 64 020602]

    [23]

    Shang Y, Zhu K, Lin C, Lu H Y, Zou Y B, Zhao Y Y, Shou Y R, Cao C, Zhao S, Geng Y X, Zhu J, Fu H Z, Wang H Y, Lu Y R, Yuan Z X, Guo Z Y, Chen J E, Yan X Q 2013 Sci. Sin.:Phys. Mech. Astron. 43 1282 (in Chinese)[尚勇, 朱昆, 林晨, 卢海洋, 邹宇斌, 赵研英, 寿寅任, 曹超, 赵栓, 耿易新, 祝娇, 符合振, 王洪勇, 陆元荣, 袁忠喜, 郭之虞, 陈佳洱, 颜学庆 2013 中国科学:物理学 力学 天文学 43 1282]

    [24]

    Yan X Q, Lin C, Lu H Y, Zhu K, Zou Y B, Wang H Y, Liu B, Zhao S, Zhu J, Geng Y X, Fu H Zh, Shang Y, Cao C, Shou Y R, Song W, Lu Y R, Yuan Z X, Guo Z Y, He X T, Chen J E 2013 Front. Phys. 8 577

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Hiroyuki D, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Corde S, TaPhuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E 2013 Rev. Mod. Phys. 85 1

    [5]

    Ivanov V V, Maksimchuk A, Mourou G 2003 Appl. Opt. 42 7231

    [6]

    Culfa O, Tallents G J, Wagenaars E, Ridgers C P, Dance R J, Rossall A K, Gray R J, McKenna P, Brown C D R, James S F, Hoarty D J, Booth N, Robinson A P L, Lancaster K L, Pikuz S A, Faenov Y A, Kampfer T, Schulze K S, Uschmann I, Woolsey N C 2014 Phys. Plasmas 21 043106

    [7]

    Timur Z E, James K K, Atsushi S, Toshimasa M, Masaharu N, Kei K, Hideo N, Katsunobu N, Akito S, Hideyuki K, Tatsufumi N, Yuji F, Hajime O, Alexander S P, Akifumi Y, Mamiko N, Hiromitsu K, Kiminori K, Masaki K, Sergei V B 2014 Nucl. Instrum. Methods Phys. Res. Sect. A 745 150

    [8]

    Yabuuchi T, Mishra R, McGuffey C, Qiao B, Wei M S, Sawada H, Sentoku Y, Ma T, Higginson D P, Akli K U, Batani D, Chen H, Gizzi L A, Key M H, Mackinnon A J, McLean H S, Norreys P A, Patel P K, Stephens R B, Ping Y, Theobald W, Stoeckl C, Beg F N 2013 New J. Phys. 15 015020

    [9]

    Jeffrey W, Charles G D 2004 Opt. Express 12 1383

    [10]

    Norihiko N, Atsushi M 2007 Opt. Lett. 32 3516

    [11]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, Etchepare J 2005 Opt. Lett. 30 8

    [12]

    Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese)[刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 物理学报 59 7036]

    [13]

    Röde C, Heyer M, Behmke M, Kübel M, Jäckel O, Ziegler W, Ehrt D, Kaluza M C, Paulus G G 2011 Appl. Phys. B 103 295

    [14]

    Anna L, Tiberio C, Pascal D O, Fabrice R, Michel P, Fabien Q, Pascal M, Michel B, Hervé L, Philippe M 2007 Opt. Lett. 32 310

    [15]

    Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 7

    [16]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [17]

    Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X, Xu Z Z 2014 Opt. Commun. 313 175

    [18]

    Lureau F, Laux S, Casagrande O, Radier C, Chalus O, Caradec F, Simon-Boisson C 2012 Proc. SPIE 8235 823513

    [19]

    Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 Rev. Sci. Instrum. 84, 043106

    [20]

    Lliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 2

    [21]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Rousseau J P, Chaudet P, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2007 Appl. Phys. B 87 595

    [22]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese)[李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 物理学报 64 020602]

    [23]

    Shang Y, Zhu K, Lin C, Lu H Y, Zou Y B, Zhao Y Y, Shou Y R, Cao C, Zhao S, Geng Y X, Zhu J, Fu H Z, Wang H Y, Lu Y R, Yuan Z X, Guo Z Y, Chen J E, Yan X Q 2013 Sci. Sin.:Phys. Mech. Astron. 43 1282 (in Chinese)[尚勇, 朱昆, 林晨, 卢海洋, 邹宇斌, 赵研英, 寿寅任, 曹超, 赵栓, 耿易新, 祝娇, 符合振, 王洪勇, 陆元荣, 袁忠喜, 郭之虞, 陈佳洱, 颜学庆 2013 中国科学:物理学 力学 天文学 43 1282]

    [24]

    Yan X Q, Lin C, Lu H Y, Zhu K, Zou Y B, Wang H Y, Liu B, Zhao S, Zhu J, Geng Y X, Fu H Zh, Shang Y, Cao C, Shou Y R, Song W, Lu Y R, Yuan Z X, Guo Z Y, He X T, Chen J E 2013 Front. Phys. 8 577

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大. 物理学报, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [3] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法. 物理学报, 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [4] 李荣凤, 薛兴泰, 赵研英, 耿易星, 卢海洋, 颜学庆, 陈佳洱. 非真空传输的高效交叉偏振滤波设计与产生. 物理学报, 2017, 66(15): 150601. doi: 10.7498/aps.66.150601
    [5] 时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和. 基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性. 物理学报, 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [6] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [7] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [9] 陈传文, 项阳. 铌锌酸铅-钛酸铅薄层中Lamb波模式的交叉特性. 物理学报, 2012, 61(10): 107701. doi: 10.7498/aps.61.107701
    [10] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大. 物理学报, 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [11] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [12] 王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣. 基于交叉偏振波产生的脉冲净化技术研究与应用. 物理学报, 2012, 61(9): 094214. doi: 10.7498/aps.61.094214
    [13] 刘成, 王兆华, 李伟昌, 刘峰, 魏志义. 交叉偏振滤波技术提高飞秒超强激光信噪比的研究. 物理学报, 2010, 59(10): 7036-7040. doi: 10.7498/aps.59.7036
    [14] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [15] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲. 物理学报, 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [16] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列. 物理学报, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [17] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [18] 何寿杰, 陈岐岱, 李雪辰, 艾希成, 张建平, 王 龙. 圆锥气泡声致发光光脉冲和光谱. 物理学报, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [19] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿. 物理学报, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [20] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
计量
  • 文章访问数:  4734
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-10-07
  • 刊出日期:  2017-02-05

/

返回文章
返回