搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算

郑治秀 张林

引用本文:
Citation:

Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算

郑治秀, 张林

Atomic-scale simulation study of structural changes of Fe-Cu binary system containing Cu clusters embedded in the Fe matrix during heating

Zheng Zhi-Xiu, Zhang Lin
PDF
导出引用
  • 采用基于嵌入原子方法的分子动力学方法模拟了具有体心立方晶格结构的Fe基体中包含小尺寸Cu纳米粒子的Fe-Cu二元体系在升温过程中的原子堆积结构变化. 进行了Cu原子均方位移、Cu原子对分布函数和原子的径向密度分布函数的计算,并对纯Cu原子区、Fe-Cu界面区和纯Fe基体区的分区域原子堆积结构进行了分析. 结果表明,Fe基体内Cu团簇的尺寸及其在Fe基体内所能占据区域的大小,对不同温度下的Cu团簇内原子堆积结构及Fe基体的原子堆积结构具有影响. 升温过程中不同尺寸受基体约束Cu团簇对Fe基体结构改变的影响表现出很大差异. 对于Febulk-Cu135体系,基体的应变临近Fe-Cu界面区,同时在团簇中间的基体区域出现大量空位缺陷和应变集中区;对于Febulk-Cu141体系,随温度升高,基体中出现的应变区域表现为小尺寸、数量多向大尺寸、小数量的变化.
    Nano-size Cu precipitates are the main products of irradiation embrittlement of nuclear reactor pressure vessel steels. Molecular dynamics simulation within the framework of embedded atom method is performed to study atomic packing change in Fe-Cu binary system, where the small Cu clusters are embedded in the crystal body centered cubic (BCC) Fe lattices. As the temperature increases, atomic packing change occurs in the Fe-Cu binary system. The mean square displacement of Cu atom, pair distribution function of the Cu atoms, and the atomic density profile along the radial direction are calculated. The atom packing structures in pure Cu region, Fe-Cu interface region, and pure Fe matrix are analyzed. The simulation results show that the packing structures in the Cu cluster and the Fe matrix are greatly affected by the sizes of these clusters and the volume of the Fe matrix containing these clusters. The structural changes present apparent differences, for the Fe matrixes contain these confined Cu clusters with different atom numbers during heating. As the Fe matrix can only provide small space to accommodate the Cu atoms, packing patterns in many Cu atoms are disordered for the Febulk-Cu135 system. In this binary system, strain region in the Fe matrix is adjacent to the Cu cluster. In the meantime, there are a lot of vacancy defects and strain regions in the matrix. For the Febulk-Cu141 system, although the Cu cluster contains more atoms, the Fe matrix can accommodate Cu atoms in a larger space, and the majority of these Cu atoms are located at the BCC crystal lattices. With increasing the temperature, the changes can be observed that the number of the strain regions decrease, whereas the sizes of some strain regions increase.
      通信作者: 张林, zhanglin@imp.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51171044,51671051)、辽宁省自然科学基金(批准号:2015020207) 和中央高校基本科研业务费(批准号:N140504001) 资助的课题.
      Corresponding author: Zhang Lin, zhanglin@imp.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171044, 51671051), the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020207), and the Fundamental Research Fund for the Central Universities, China (Grant No. N140504001).
    [1]

    Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]

    [2]

    Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]

    [3]

    Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]

    [4]

    Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312

    [5]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110

    [6]

    Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18

    [7]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35

    [8]

    Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176

    [9]

    Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86

    [10]

    Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]

    [11]

    Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]

    [12]

    Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]

    [13]

    Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331

    [14]

    Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52

    [15]

    Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841

    [16]

    Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513

    [17]

    Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097

    [18]

    Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713

    [19]

    Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19

    [20]

    Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118

    [21]

    Zhang L, Fan Q N 2016 Indian J. Phys. 90 9

    [22]

    Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310

    [23]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [24]

    Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347

    [25]

    Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1

    [26]

    Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383

    [27]

    Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140

    [28]

    You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236

    [29]

    Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601

    [30]

    Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010

  • [1]

    Xu L Y 1997 Power Eng. 17 7 (in Chinese) [许连义 1997 动力工程 17 7]

    [2]

    Li C L, Zhang M Q 2008 Mater. Rev. 22 65 (in Chinese) [李承亮, 张明乾 2008 材料导报 22 65]

    [3]

    Yang W D 2006 Nuclear Reactor Materials (Beijing: Atom Energy Press) p114 (in Chinese) [杨文斗 2006反应堆材料学 (北京: 原子能出版社) 第114页]

    [4]

    Qian G, Gonzlez-Albuixech V F, Niffenegger M 2014 Nucl. Eng. Des. 270 312

    [5]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110

    [6]

    Odette G R, Lucas G E 2001 JOM-Journal of the Minerals Materials Society 53 18

    [7]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35

    [8]

    Odette G R, Wirth B D, Bacon D J, Ghoniem N M 2001 MRS Bull. 26 176

    [9]

    Styman P D, Hyde J M, Wilford K, Morley A, Smith G D W 2012 Prog. Nucl. Energy 57(S1) 86

    [10]

    Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C 2011 Acta Metallurgica Sin. 47 905 (in Chinese) [徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超 2011 金属学报 47 905]

    [11]

    Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A 2012 Acta Metallurgica Sin. 48 789 (in Chinese) [徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安 2012 金属学报 48 789]

    [12]

    Wang W, Zhu J J, Lin M D, Zhou B X, Liu W Q 2010 J. Univ. Sci. Eng. Beijing 32 39 (in Chinese) [王伟, 朱娟娟, 林民东, 周邦新, 刘文庆 2010 北京科技大学学报 32 39]

    [13]

    Auger P, Pareige P, Welzel S, Duysen J C V 2000 J. Nucl. Mater. 280 331

    [14]

    Kocik J, Keilova E, Cizek J, Prochazka I 2002 J. Nucl. Mater. 303 52

    [15]

    Isheim D, Gagliano M S, Fine M E, Seidman D N 2006 Acta Mater. 54 841

    [16]

    Kolli R P, Wojes R M, Zaucha S, Seidman D N 2008 Int. J. Mater. Res. 99 513

    [17]

    Osetsky Y N, Serra A 1997 Philos. Mag. A 75 1097

    [18]

    Ackland G J, Bacon D J, Calder A F, Harry T 1997 Philos. Mag. A 75 713

    [19]

    Ludwig M, Farkas D, Pedraza D, Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19

    [20]

    Pasianot R C, Malerba L 2007 J. Nucl. Mater. 360 118

    [21]

    Zhang L, Fan Q N 2016 Indian J. Phys. 90 9

    [22]

    Zhang L 2016 Phys. Chem. Chem. Phys. 18 7310

    [23]

    Zhang L 2016 J. Phys. Soc. Jpn. 85 054602

    [24]

    Marian J, Wirth B D, Odette G R, Perlado J M 2004 Comput. Mater. Sci. 31 347

    [25]

    Othen P J, Jerkins M L, Smith G D W 1994 Philos. Mag. A 70 1

    [26]

    Othen P J, Jerkins M L, Smith G D W, Phythian W 1991 Philos. Mag. A 64 383

    [27]

    Hu L J, Zhao S J, Lu Q D 2012 Mater. Sci. Eng. A 556 140

    [28]

    You L J, Hu L J, Xie Y P, Zhao S J 2016 Comput. Mater. Sci. 118 236

    [29]

    Zhu L S, Zhao S J 2014 Chin. Phys. B 23 063601

    [30]

    Bonny G, Pasianot R C, Malerba L 2009 Modell. Simul. Mater. Sci. Eng. 17 025010

  • [1] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [2] 高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制. 物理学报, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [3] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平. 二十面体团簇的遗传:一个与快凝Cu56Zr44合金玻璃形成能力有关的动力学参数. 物理学报, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [4] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [5] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究. 物理学报, 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [6] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇 . 物理学报, 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [7] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [8] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [9] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [10] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [11] 高皓, 廖龙忠, 张朝晖. 离子注入的铝在Si(100)表面的偏析及其引起的纳米团簇和合金晶粒形成现象的实验研究. 物理学报, 2009, 58(1): 427-431. doi: 10.7498/aps.58.427
    [12] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [14] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [15] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [16] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [17] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法. 物理学报, 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法. 物理学报, 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [20] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为. 物理学报, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
计量
  • 文章访问数:  3136
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-29
  • 修回日期:  2017-01-17
  • 刊出日期:  2017-04-05

Fe基体中包含Cu团簇的Fe-Cu二元体系在升温过程中结构变化的原子尺度计算

  • 1. 东北大学材料科学与工程学院, 沈阳 110819;
  • 2. 东北大学, 材料各向异性与织构教育部重点实验室, 沈阳 110819
  • 通信作者: 张林, zhanglin@imp.neu.edu.cn
    基金项目: 国家自然科学基金(批准号:51171044,51671051)、辽宁省自然科学基金(批准号:2015020207) 和中央高校基本科研业务费(批准号:N140504001) 资助的课题.

摘要: 采用基于嵌入原子方法的分子动力学方法模拟了具有体心立方晶格结构的Fe基体中包含小尺寸Cu纳米粒子的Fe-Cu二元体系在升温过程中的原子堆积结构变化. 进行了Cu原子均方位移、Cu原子对分布函数和原子的径向密度分布函数的计算,并对纯Cu原子区、Fe-Cu界面区和纯Fe基体区的分区域原子堆积结构进行了分析. 结果表明,Fe基体内Cu团簇的尺寸及其在Fe基体内所能占据区域的大小,对不同温度下的Cu团簇内原子堆积结构及Fe基体的原子堆积结构具有影响. 升温过程中不同尺寸受基体约束Cu团簇对Fe基体结构改变的影响表现出很大差异. 对于Febulk-Cu135体系,基体的应变临近Fe-Cu界面区,同时在团簇中间的基体区域出现大量空位缺陷和应变集中区;对于Febulk-Cu141体系,随温度升高,基体中出现的应变区域表现为小尺寸、数量多向大尺寸、小数量的变化.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回