搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器

杨易 徐贲 刘亚铭 李萍 王东宁 赵春柳

引用本文:
Citation:

基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器

杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳

Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect

Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu
PDF
导出引用
  • 本文介绍了一种高灵敏度光纤温度传感器.该传感器由一小段毛细管熔接于单模光纤和一段大模场光纤之间而构成串联的两个法布里-珀罗干涉仪.由于俩干涉仪具有相近的自由光谱区,因而它们的叠加光谱会产生游标效应.实验结果显示,利用游标效应解调,该传感器的温度灵敏度可从单一空气腔法布里-珀罗干涉仪的0.71 pm/℃提高到179.30 pm/℃.该传感器结构紧凑(1 mm)且灵敏度高,具有良好的应用前景.
    Fiber-optic temperature sensors have gained much attention owing to their intrinsic features of light weight, immunity to electromagnetic interference, and capability for distributed measurement. Especially, temperature sensors based on Fabry-Perot interferometers (FPIs) are attractive owing to their advantages of compact size and convenient reflection measurement. However, due to the low thermal expansion or/and thermo-optic coefficient of fiber, the temperature sensitivities of these sensors are normally low (~10 pm/℃ or even lower). In order to improve the temperature sensitivity, a device with dual cascaded FPIs is proposed and demonstrated in this paper, which works on vernier effect and exhibits a much higher temperature sensitivity. The device is fabricated by splicing a short segment of large mode area (LMA) fiber to a short segment of capillary tube fused with a section of single-mode fiber to form an extrinsic Fabry-Perot interferometer with a glass cavity cascaded to an intrinsic FPI with a narrow air cavity. By setting the lengths of capillary tube and LMA fiber to allow similar free spectral ranges to be obtained, and superimposing of the reflection spectra of the two FPIs, the vernier effect can be generated. Firstly, the principle of temperature sensing based on vernier effect of this device is analyzed and simulated theoretically, and it is found that the temperature sensitivity can be improved significantly by using vernier effect compared with that of a single FPI with an air-cavity or glass cavity by directly tracing resonant dips/peaks. Then, the temperature responses of the FPI with single air-cavity and dual cascaded cavities are measured, respectively. Experimental results match well with the theoretical analysis carried out. The temperature sensitivity of the proposed sensor is improved greatly from 0.71 pm/℃ for a single FPI sensor with an air-cavity to 179.30 pm/℃ by employing the vernier effect. Additionally, the sensor exhibits good repeatability in a temperature range of 100-500℃. The proposed sensor has the advantages of compact size (1 mm in dimension) and high sensitivity, which makes it promising for temperature sensing in a variety of industries, such as food inspection, pharmacy, oil/gas exploration, environment, and high-voltage power systems.
      通信作者: 徐贲, xuben@cjlu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61405184)和浙江省自然科学基金(批准号:LY17F050010)资助的课题.
      Corresponding author: Xu Ben, xuben@cjlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405184) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY17F050010).
    [1]

    Lee B 2003 Opt. Fiber Technol. 9 57

    [2]

    Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 物理学报 65 24211]

    [3]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 物理学报 64 050704]

    [4]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 物理学报 62 044223]

    [5]

    Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1

    [6]

    Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451

    [7]

    Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149

    [8]

    Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468

    [9]

    Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269

    [10]

    Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619

    [11]

    Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167

    [12]

    Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142

    [13]

    Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252

    [14]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633

    [15]

    Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245

    [16]

    Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757

    [17]

    Dai D X 2009 Opt. Express 17 23817

    [18]

    Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4

    [19]

    Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581

    [20]

    Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73

    [21]

    Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461

    [22]

    Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467

    [23]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [24]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [25]

    Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418

    [26]

    Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626

    [27]

    Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669

    [28]

    Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50

    [29]

    Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367

  • [1]

    Lee B 2003 Opt. Fiber Technol. 9 57

    [2]

    Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 物理学报 65 24211]

    [3]

    Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 物理学报 64 050704]

    [4]

    Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 物理学报 62 044223]

    [5]

    Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1

    [6]

    Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451

    [7]

    Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149

    [8]

    Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468

    [9]

    Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269

    [10]

    Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619

    [11]

    Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167

    [12]

    Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142

    [13]

    Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252

    [14]

    Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633

    [15]

    Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245

    [16]

    Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757

    [17]

    Dai D X 2009 Opt. Express 17 23817

    [18]

    Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4

    [19]

    Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581

    [20]

    Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73

    [21]

    Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461

    [22]

    Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467

    [23]

    Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813

    [24]

    Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891

    [25]

    Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418

    [26]

    Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626

    [27]

    Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669

    [28]

    Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50

    [29]

    Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367

  • [1] 王松, 周闯, 李素文, 牟福生. 基于法布里-珀罗干涉仪测量大气环境CO2的方法. 物理学报, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [3] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究. 物理学报, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [4] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [5] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [6] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究. 物理学报, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [7] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展. 物理学报, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [10] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [11] 曹晔, 裴庸惟, 童峥嵘. 仅用一根局部微结构长周期光纤光栅实现温度与弯曲曲率的同时测量. 物理学报, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [12] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [13] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究. 物理学报, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [14] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [15] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [16] 秦伟, 张玉滨, 解士杰. 有机Co/Alq3/La1-xSrxMnO3(LSMO)器件磁电阻的温度效应研究. 物理学报, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [17] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [18] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  8076
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-09
  • 修回日期:  2016-12-21
  • 刊出日期:  2017-05-05

/

返回文章
返回