搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In1+xTe化合物的结构及热电性能研究

范人杰 江先燕 陶奇睿 梅期才 唐颖菲 陈志权 苏贤礼 唐新峰

引用本文:
Citation:

In1+xTe化合物的结构及热电性能研究

范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰

Structure and thermoelectric properties of In1+xTe compounds

Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng
PDF
HTML
导出引用
  • InTe化合物中In+的孤对电子引发的晶格非谐性振动使得其具有本征极低的热导率, 因此被认为是一种具有潜力的中温热电材料. 然而, 较低的电输运性能使得InTe的热电性能不高. 在本工作中, 采用熔融、退火结合放电等离子活化烧结工艺制备了一系列In1+xTe (x = 0, 0.001, 0.003, 0.005, 0.01)单相多晶样品, 研究了In含量调控对材料电热输运性能的影响规律. 随着温度升高, 载流子散射机制由晶界散射占主导向声学支声子散射转变, 导致材料发生从半导体到金属的转变. 正电子湮没谱和电传输性能测试结果表明, In空位是载流子产生的主要机制, 过量In的加入有效抑制了In空位的产生, 降低了材料的载流子浓度, 提升了材料的Seebeck系数, 使In过量样品在测试温区范围内的功率因子有了大幅度提升, 其中, In1.005Te样品在585 K下取得最大功率因子0.60 mW·m–1·K–2, 比本征InTe样品提高了约40%. 此外In过量样品保持了InTe的本征低热导率, In1.01Te样品在773 K下的总热导率为0.46 W·m–1·K–1. 由于功率因子的提升和低的热导率, In过量样品在整个温度区间范围内的无量纲热电优值ZT得到了大幅度的提高, 其中, In1.003Te样品在750 K下获得最大ZT值为0.71, In1.005Te样品在300-750 K的ZTave为0.39, 较本征InTe样品提升了23%.
    The inharmonic lattice vibration induced by the lone pair electrons of In+ in the InTe compound produces its intrinsically low thermal conductivity, thus InTe compound shows a great potential serving as an intermediate temperature thermoelectric material. However, its poor electrical transport properties result in an inferior thermoelectric performance. In this study, a series of single-phase In1+xTe (x = 0, 0.001, 0.003, 0.005, 0.01) polycrystalline samples were prepared by a melting-annealing process combined with spark plasma sintering. The influence of In content on the electronic and thermal transport properties for In1+xTe compounds was systematically studied. As the temperature rises, the predominant carrier scattering mechanism changes from grain boundary scattering to acoustic phonon scattering, leading to an unusual semiconductor-to-metal transition in In1+xTe samples. Positron annihilation spectroscopy and electrical transport properties demonstrate that In vacancies are the main source for the charge carrier. Adding extra In effectively suppresses the concentration of In vacancies, reduces the carrier concentration and improves the Seebeck coefficient of In1+xTe samples. The power factor of the In excess samples in the test temperature range is greatly improved in comparison with that of the pristine InTe sample. In1.005Te sample achieves a maximum power factor of 0.60 mW·m–1·K–2 at 585 K, which is approximately 40% higher than the pristine InTe sample. In addition, the In excess sample maintains a thermal conductivity as intrinsically low as the thermal conductivity of pristine InTe, and the total thermal conductivity of the In1.01Te sample at 773 K is 0.46 W·m–1·K–1. Owing to the improvement of the power factor and the low thermal conductivity, the ZT value of the In excess sample is greatly improved in the entire measure temperature range. A maximum ZT value of 0.71 is attained at 750 K for In1.003Te sample, and a maximum ZTave of 0.39 is achieved for In1.005Te sample in a temperature range of 300–750 K, which is about 23% higher than that of pristine InTe sample.
      通信作者: 苏贤礼, suxianli@whut.edu.cn ; 唐新峰, tangxf@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51972256, 51872219, 51632006)、国家重点研发计划项目(批准号: 2019YFA0704900)和武汉市应用基础前沿研究项目(批准号: 2019010701011405)资助的课题
      Corresponding author: Su Xian-Li, suxianli@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972256, 51872219, 51632006), the National Key Research and Development Program of China (Grant No. 2019YFA0704900), and Wuhan Frontier Project on Applied Research Foundation (Grant No. 2019010701011405)
    [1]

    He J, Tritt T M 2017 Science 357 1

    [2]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 101

    [4]

    Su X L, Hao S Q, Bailey T P, Wang S, Hadar I, Tan G J, Song T B, Zhang Q J, Uher C, Wolverton C, Tang X F, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [5]

    Parlak M, Ercelebi C, Günal I, Özkan H, Gasanly N 1996 Cryst. Res. Technol. 31 673Google Scholar

    [6]

    Pal S, Bose D, Asokan S, Gopal E 1991 Solid State Commun. 80 753Google Scholar

    [7]

    Nagat A, Gamal G, Belal A 1990 Cryst. Res. Technol. 25 72Google Scholar

    [8]

    Pan S S, Liu H, Li Z L, You L, Dai S N, Yang J, Guo K, Luo J 2020 J. Alloy. Compd. 813 152210Google Scholar

    [9]

    Misra S, Barreteau C, Crivello J C, Giordano V M, Castellan J P, Sidis Y, Levinský P, Hejtmánek J, Malaman B, Dauscher A, Lenoir B, Candolfi C, Pailhès S 2020 Phys. Rev. Research 2 043371Google Scholar

    [10]

    Back S Y, Kim Y K, Cho H, Han M K, Kim S J, Rhyee J S 2020 ACS Appl. Energ. Mater. 3 3628Google Scholar

    [11]

    Back S Y, Cho H, Kim Y K, Byeon S, Jin H, Koumoto K, Rhyee J S 2018 AIP Advances 8 115227Google Scholar

    [12]

    Jana M K, Pal K, Waghmare U V, Biswas K 2016 Angew. Chem. Int. Edit 55 7792Google Scholar

    [13]

    Huang R C, Huang Y, Zhu B, He M K, Ge Z H, Fu L W, He J Q 2019 J. Appl. Phys. 126 125108Google Scholar

    [14]

    Zhu H X, Zhang B, Wang G W, Peng K L, Yan Y C, Zhang Q, Han X D, Wang G Y, Lu X, Zhou X Y 2019 J. Mater. Chem. A 7 11690Google Scholar

    [15]

    Zlomanov V P, Sheiman M S, Legendre B 2001 J. Phase Equilibria 22 339Google Scholar

    [16]

    Cao Y, Su X L, Meng F C, Bailey T P, Zhao J G, Xie H Y, He J, Uher C, Tang X F 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [17]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [18]

    Slade T J, Grovogui J A, Kuo J J, Anand S, Bailey T P, Wood M, Uher C, Snyder G J, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 1509Google Scholar

    [19]

    Seto J Y 1975 J. Appl. Phys. 46 5247Google Scholar

    [20]

    Chen S, Bai H, Li J J, Pan W F, Jiang X Y, Li Z, Chen Z Q, Yan Y G, Su X L, Wu J S, Uher C, Tang X F 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

  • 图 1  InTe的晶体结构

    Fig. 1.  The crystal structure of InTe.

    图 2  (a) In1+xTe (x = 0—0.01)化合物的粉末XRD图谱; (b) In1+xTe (x = 0—0.01)样品a轴及c轴的晶胞参数

    Fig. 2.  (a) Powder XRD patterns of In1+xTe (x = 0–0.01) compounds; (b) the a and c lattice parameters of In1+xTe (x = 0–0.01).

    图 3  In1+xTe (x = 0—0.01)样品的热流曲线

    Fig. 3.  Heat flow curve of In1+xTe samples (x = 0–0.01).

    图 4  In1+xTe样品 ((a)—(c) x = 0, (d)—(f) x = 0.01)抛光面的(a), (d)背散射电子图像和(b), (e) In, (c), (f) Te元素面分布图谱

    Fig. 4.  (a), (d) Back-scattering electron (BSE) images and (b), (e)In, (c), (f)Te elemental distributions of the polished surfaces for In1+xTe samples ((a)–(c) x = 0, (d)–(f) x = 0.01).

    图 5  In1.01Te烧结样品的自由断面场发射电镜图片

    Fig. 5.  FESEM images of the freshly fractured surface of In1.01Te after sintering.

    图 6  In1+xTe样品的 (a)电导率、(b)塞贝克系数、(c)功率因子随温度的变化曲线, (d)塞贝克系数与载流子浓度关系曲线

    Fig. 6.  Temperature dependence of (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor for In1+xTe, (d) the relationship between carrier concentration and Seebeck coefficient for In1+xTe samples at room temperature.

    图 7  In1+xTe样品的 (a)总热导率、(b)晶格热导率、(c)热电性能优值ZT随温度变化曲线和(d) 300—750 K范围内的平均ZT

    Fig. 7.  Temperature dependence of the (a) total thermal conductivity, (b)lattice thermal conductivity, (c) figure of merit ZT and (d) ZTave in the 300–750 K range for In1+xTe samples.

    表 1  In1+xTe(0 ≤ x ≤ 0.01)样品的室温物理性能及载流子晶界散射势垒

    Table 1.  Physic properties at room temperature and the grain boundary scattering potential for charge carrier of In1+xTe (0 ≤ x ≤ 0.01).

    Nominal compositionp/(× 1019 cm–3)μ/(cm2·V–1·s–1)σ/(104 S·m–1)S/(μV·K–1)Eb/(meV)
    InTe6.728.710.9479.3141.94
    In1.001Te5.5810.720.9687.1742.03
    In1.003Te5.3516.161.3892.9923.14
    In1.005Te4.5317.731.28131.4425.47
    In1.01Te2.9025.551.19132.5115.19
    下载: 导出CSV

    表 2  不同In含量In1+xTe样品的正电子寿命

    Table 2.  Positron Lifetimes for In1+xTe Samples.

    Sampleτ1/psτ2/psI1/%I2/%τave/ps
    In0.99Te126.6342.03.3796.63334.7
    In0.999Te131.6343.04.2295.78334.1
    InTe135.0345.45.1094.90334.7
    In1.001Te147.3344.55.4994.51333.7
    In1.005Te171.0348.18.4691.54333.1
    In1.01Te181.1351.88.8991.11336.6
    下载: 导出CSV
  • [1]

    He J, Tritt T M 2017 Science 357 1

    [2]

    Tan G J, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 101

    [4]

    Su X L, Hao S Q, Bailey T P, Wang S, Hadar I, Tan G J, Song T B, Zhang Q J, Uher C, Wolverton C, Tang X F, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [5]

    Parlak M, Ercelebi C, Günal I, Özkan H, Gasanly N 1996 Cryst. Res. Technol. 31 673Google Scholar

    [6]

    Pal S, Bose D, Asokan S, Gopal E 1991 Solid State Commun. 80 753Google Scholar

    [7]

    Nagat A, Gamal G, Belal A 1990 Cryst. Res. Technol. 25 72Google Scholar

    [8]

    Pan S S, Liu H, Li Z L, You L, Dai S N, Yang J, Guo K, Luo J 2020 J. Alloy. Compd. 813 152210Google Scholar

    [9]

    Misra S, Barreteau C, Crivello J C, Giordano V M, Castellan J P, Sidis Y, Levinský P, Hejtmánek J, Malaman B, Dauscher A, Lenoir B, Candolfi C, Pailhès S 2020 Phys. Rev. Research 2 043371Google Scholar

    [10]

    Back S Y, Kim Y K, Cho H, Han M K, Kim S J, Rhyee J S 2020 ACS Appl. Energ. Mater. 3 3628Google Scholar

    [11]

    Back S Y, Cho H, Kim Y K, Byeon S, Jin H, Koumoto K, Rhyee J S 2018 AIP Advances 8 115227Google Scholar

    [12]

    Jana M K, Pal K, Waghmare U V, Biswas K 2016 Angew. Chem. Int. Edit 55 7792Google Scholar

    [13]

    Huang R C, Huang Y, Zhu B, He M K, Ge Z H, Fu L W, He J Q 2019 J. Appl. Phys. 126 125108Google Scholar

    [14]

    Zhu H X, Zhang B, Wang G W, Peng K L, Yan Y C, Zhang Q, Han X D, Wang G Y, Lu X, Zhou X Y 2019 J. Mater. Chem. A 7 11690Google Scholar

    [15]

    Zlomanov V P, Sheiman M S, Legendre B 2001 J. Phase Equilibria 22 339Google Scholar

    [16]

    Cao Y, Su X L, Meng F C, Bailey T P, Zhao J G, Xie H Y, He J, Uher C, Tang X F 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [17]

    Kuo J J, Kang S D, Imasato K, Tamaki H, Ohno S, Kanno T, Snyder G J 2018 Energy Environ. Sci. 11 429Google Scholar

    [18]

    Slade T J, Grovogui J A, Kuo J J, Anand S, Bailey T P, Wood M, Uher C, Snyder G J, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 1509Google Scholar

    [19]

    Seto J Y 1975 J. Appl. Phys. 46 5247Google Scholar

    [20]

    Chen S, Bai H, Li J J, Pan W F, Jiang X Y, Li Z, Chen Z Q, Yan Y G, Su X L, Wu J S, Uher C, Tang X F 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2-xSbxTe3-ySey基化合物的缺陷结构调控与电热输运性能研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240098
    [2] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [6] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [7] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [8] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [9] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [10] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [11] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [12] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [13] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [14] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [15] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [16] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性. 物理学报, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [17] 周 军, 方庆清, 王保明, 刘艳美, 李 貌, 闫方亮, 王胜男. 镁含量和热处理对Zn1-xMgxO薄膜结构和发光性能的影响. 物理学报, 2008, 57(10): 6614-6619. doi: 10.7498/aps.57.6614
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [20] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能. 物理学报, 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
计量
  • 文章访问数:  3219
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-03-13
  • 上网日期:  2021-06-29
  • 刊出日期:  2021-07-05

/

返回文章
返回