搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究

马爽 乌仁图雅 特古斯 武晓霞 管鹏飞 那日苏

引用本文:
Citation:

FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究

马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏

First principles study of mechanical properties of FeMnP1-xTx (T=Si, Ga, Ge) compounds

Ma Shuang, Wu Ren-Tu-Ya, O Tegus, Wu Xiao-Xia, Guan Peng-Fei, Bai Narsu
PDF
导出引用
  • 以密度泛函理论为基础,使用投影缀加波方法、VASP程序包研究了FeMnP1-xTx(T=Si,Ga,Ge)化合物的力学性质,结果表明FeMnP1-xGax化合物的晶格参数、弹性常数和电子结构与FeMnP1-xGex化合物比较接近,同时该化合物在力学上稳定,是预期具有较大的磁熵变和高磁热效应的材料.依据Pugh判据,FeMnP0.67T0.33(T=Si,Ga,Ge)化合物具有良好的延展性,三者之中FeMnP0.67Ga0.33韧性最好,FeMnP0.67Si0.33韧性相对较差,说明Ga替代P可改善此类化合物的机械性能.最后从化合物体系电子总态密度随不同掺杂T原子的演化规律解释了自洽计算得到的弹性常数的变化规律.
    Magnetic refrigeration technology is considered as a better alternative to traditional steam compression scheme, since it has many advantages such as environment friendly characteristic, more compact solid refrigerant, low cost, etc. The mechanical stability is of essential importance for serving as magnetic refrigerant materials which work under repeatedly thermal and magnetic cycles. Recent experiment reveals that the polycrystalline FeMnP1-xSix compounds are brittle, and even fracture of samples during post heat treatment is observed. Therefore, the improvement of the ductility of Fe2P-Type FeMn-based magnetocaloric materials becomes an important issue in practical application. So far, there are few studies of the mechanical properties of these compounds. Alloying is an effective method to improve the mechanical properties of single phase materials, and Ga or Ge could be a better choice to replace the Si element. In this paper, we study the mechanical properties of giant magnetocaloric FeMnP1-xTx (T=Si, Ga, Ge) compounds by the projector augmented wave method as implemented in VASP (Vienna ab initio simulation package) in the framework of density functional theory. It is found that the lattice parameter, total energy, magnetic moment, elastic constant and the electronic structure of FeMnP1-xGax compounds are similar to those of FeMnP1-xGex compounds, therefore, it is believed that the FeMnP1-xGax compounds are candidate refrigerant for room temperature magnetic refrigeration. The relatively large single crystalline elastic constants of FeMnP1-xTx (T=Si, Ga, Ge) compounds show that this family of compounds is mechanically stable. This ensures the long-term applicability of FeMnP1-xTx compounds in magnetic refrigeration facilities. For polycrystalline compounds, we calculate their shear moduli and bulk moduli by Hill averaging scheme. And according to Pugh criterion, the ductility or brittleness characteristics of FeMnP1-xTx (T=Si, Ga, Ge) compounds are discussed. All the FeMnP0.67T0.33 (T=Si, Ga, Ge) compounds are ductile, among them, FeMnP0.67Ga0.33 compound shows the best ductility, whereas the ductility of FeMnP0.67Si0.33 compound is the weakest. This result proves that substituting P with Ga could improve the ductility of this class of compound. The mechanical properties of polycrystalline FeMnP0.33T0.67 compounds are close to the ductile/brittle critical point. For FeMnP0.33T0.67 compounds, the T atoms just occupy the 2c sites of metalloid atom in Fe2P-type structure, therefore it is expected that the occupation disorders of P and T atoms at high T concentration could improve the ductility of the compounds according to the result of FeMnP0.67Ga0.33 compound. Finally, the self-consistent elastic constants of different compounds are understood from the calculated electronic density of states and force theorem.
      通信作者: 那日苏, nars@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11464037)和内蒙古自然科学基金(批准号:2016MS0113)资助的课题.
      Corresponding author: Bai Narsu, nars@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464037) and the Natural Science Foundation of Inner Mongolia, China (Grant No. 2016MS0113).
    [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Smith A, Bahl C R, Bjork R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [3]

    Yibole H, Guillou F, Caron L, Jimenez E, de Groot F M F, Roy P, de Groot R, Bruck E 2015 Phys. Rev. B 91 014429

    [4]

    Bruck E, Tegus O, Thanh D T C, Buschow K H J 2007 J. Magn. Magn. Mater. 310 2793

    [5]

    Li G J, Li W, Stephan S, Li X Q, Delczeg-Czirjak E K, Yaroslav O K, Olle E, Brje J, Levente V 2014 Appl. Phys. Lett. 105 262405

    [6]

    Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletvo A K 1996 J. Appl. Phys. 79 1689

    [7]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [8]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416

    [9]

    Hai X Y, Mayer C, Colin C V, Miraglia S 2016 J. Magn. Magn. Mater. 400 344

    [10]

    Li S P, Huang R J, Zhao Y Q, Wang W, Li L F 2015 Phys. Chem. Chem. Phys. 17 30999

    [11]

    Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Glavatskyy I N, Dubowik J 2012 Acta Mater. 60 4780

    [12]

    Tang X D, Wang W H, Zhu W, Liu E K, Wu G H, Meng F B, Liu H Y, Luo H Z 2010 Appl. Phys. Lett. 97 242513

    [13]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [14]

    Guillou F, Porcari G, Yibole H, van Dijk N H, Bruck E 2014 Adv. Mater. 26 2671

    [15]

    Miao X F, Caron L, Roy P, Dung N H, Zhang L, Kockelmann A, de Groot R A, van Dijk N H, Bruck E 2014 Phys. Rev. B 89 174429

    [16]

    Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud A A, Sandeman K G 2013 Phys. Rev. B 88 024417

    [17]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [18]

    Guillou F, Ollefs K, Wilhelm F, Rogalev A 2015 Phys. Rev. B 92 224427

    [19]

    Hoglin V, Andersson M S, Sarkar T, Nordblad P, Sahlberg M 2015 J. Magn. Magn. Mater. 374 455

    [20]

    Delczeg-Czirjak E K, Pereiro M, Bergqvist L, Kvashnin Y O, Marco I D, Li G J, Vitos L, Eriksson O 2014 Phys. Rev. B 90 214436

    [21]

    Roy P, Torun E, de Groot R A 2016 Phys. Rev. B 93 094110

    [22]

    Liu D, Yue M, Zhang J X, Mcqueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q 2009 Phys. Rev. B 79 014435

    [23]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer-Verlag) pp107-113

    [24]

    Murnaghan F D 1994 The Compressibility of Media Under Extreme Pressures (USA: Proc Natl Acad Sci) pp244-247

    [25]

    Grimvall G 1999 Thermophysical Properties of Materials (The Netherlands: Elsevier Science B V) pp27-40

    [26]

    Ernzerhof M, Scuseria G E 2000 Theor. Chem. Acc. 103 259

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [28]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [29]

    Kresse G, Hanfner J 1993 Phys. Rev. B 47 558

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Roy P, Brck E, de Groot R A 2016 Phys. Rev. B 93 165101

    [33]

    Pugh S F 1954 Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals (London: Philosophical Magazine) pp823-843

    [34]

    Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski K J 2014 Mater. Sci. Eng. A 590 74

    [35]

    Counts W A, Friak M, Raabe D, Neugebauer J 2009 Acta Mater. 57 69

    [36]

    Mackintosh A R, Andersen O K 1980 Electrons at the Fermi Surface (England: Cambridge University Press) pp149-224

    [37]

    Skriver H L 1985 Phys. Rev. B 31 1909

    [38]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

  • [1]

    Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479

    [2]

    Smith A, Bahl C R, Bjork R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [3]

    Yibole H, Guillou F, Caron L, Jimenez E, de Groot F M F, Roy P, de Groot R, Bruck E 2015 Phys. Rev. B 91 014429

    [4]

    Bruck E, Tegus O, Thanh D T C, Buschow K H J 2007 J. Magn. Magn. Mater. 310 2793

    [5]

    Li G J, Li W, Stephan S, Li X Q, Delczeg-Czirjak E K, Yaroslav O K, Olle E, Brje J, Levente V 2014 Appl. Phys. Lett. 105 262405

    [6]

    Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletvo A K 1996 J. Appl. Phys. 79 1689

    [7]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [8]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416

    [9]

    Hai X Y, Mayer C, Colin C V, Miraglia S 2016 J. Magn. Magn. Mater. 400 344

    [10]

    Li S P, Huang R J, Zhao Y Q, Wang W, Li L F 2015 Phys. Chem. Chem. Phys. 17 30999

    [11]

    Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Glavatskyy I N, Dubowik J 2012 Acta Mater. 60 4780

    [12]

    Tang X D, Wang W H, Zhu W, Liu E K, Wu G H, Meng F B, Liu H Y, Luo H Z 2010 Appl. Phys. Lett. 97 242513

    [13]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [14]

    Guillou F, Porcari G, Yibole H, van Dijk N H, Bruck E 2014 Adv. Mater. 26 2671

    [15]

    Miao X F, Caron L, Roy P, Dung N H, Zhang L, Kockelmann A, de Groot R A, van Dijk N H, Bruck E 2014 Phys. Rev. B 89 174429

    [16]

    Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud A A, Sandeman K G 2013 Phys. Rev. B 88 024417

    [17]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [18]

    Guillou F, Ollefs K, Wilhelm F, Rogalev A 2015 Phys. Rev. B 92 224427

    [19]

    Hoglin V, Andersson M S, Sarkar T, Nordblad P, Sahlberg M 2015 J. Magn. Magn. Mater. 374 455

    [20]

    Delczeg-Czirjak E K, Pereiro M, Bergqvist L, Kvashnin Y O, Marco I D, Li G J, Vitos L, Eriksson O 2014 Phys. Rev. B 90 214436

    [21]

    Roy P, Torun E, de Groot R A 2016 Phys. Rev. B 93 094110

    [22]

    Liu D, Yue M, Zhang J X, Mcqueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q 2009 Phys. Rev. B 79 014435

    [23]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer-Verlag) pp107-113

    [24]

    Murnaghan F D 1994 The Compressibility of Media Under Extreme Pressures (USA: Proc Natl Acad Sci) pp244-247

    [25]

    Grimvall G 1999 Thermophysical Properties of Materials (The Netherlands: Elsevier Science B V) pp27-40

    [26]

    Ernzerhof M, Scuseria G E 2000 Theor. Chem. Acc. 103 259

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [28]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [29]

    Kresse G, Hanfner J 1993 Phys. Rev. B 47 558

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [32]

    Roy P, Brck E, de Groot R A 2016 Phys. Rev. B 93 165101

    [33]

    Pugh S F 1954 Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals (London: Philosophical Magazine) pp823-843

    [34]

    Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski K J 2014 Mater. Sci. Eng. A 590 74

    [35]

    Counts W A, Friak M, Raabe D, Neugebauer J 2009 Acta Mater. 57 69

    [36]

    Mackintosh A R, Andersen O K 1980 Electrons at the Fermi Surface (England: Cambridge University Press) pp149-224

    [37]

    Skriver H L 1985 Phys. Rev. B 31 1909

    [38]

    Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105

  • [1] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究. 物理学报, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [2] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [3] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [6] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [7] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [8] 何仁, 李英叶, 陈敬欣, 赵学玲, 汤欢, 张丽娜, 沈艳娇, 李锋, 杨琳, 韦德远. 三点、四点法机械性能测试建模及其在太阳电池中的应用. 物理学报, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [9] 王铁山, 张多飞, 陈亮, 律鹏, 杜鑫, 袁伟, 杨迪. 辐照导致硼硅酸盐玻璃机械性能变化. 物理学报, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [10] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [11] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [12] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [13] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [14] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [15] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [16] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  3059
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-03-21
  • 刊出日期:  2017-06-05

FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究

  • 1. 内蒙古师范大学物理与电子信息学院, 呼和浩特 010022;
  • 2. 内蒙古科技大学理学院, 包头 014010;
  • 3. 北京计算科学研究中心, 北京 100193
  • 通信作者: 那日苏, nars@imnu.edu.cn
    基金项目: 国家自然科学基金(批准号:11464037)和内蒙古自然科学基金(批准号:2016MS0113)资助的课题.

摘要: 以密度泛函理论为基础,使用投影缀加波方法、VASP程序包研究了FeMnP1-xTx(T=Si,Ga,Ge)化合物的力学性质,结果表明FeMnP1-xGax化合物的晶格参数、弹性常数和电子结构与FeMnP1-xGex化合物比较接近,同时该化合物在力学上稳定,是预期具有较大的磁熵变和高磁热效应的材料.依据Pugh判据,FeMnP0.67T0.33(T=Si,Ga,Ge)化合物具有良好的延展性,三者之中FeMnP0.67Ga0.33韧性最好,FeMnP0.67Si0.33韧性相对较差,说明Ga替代P可改善此类化合物的机械性能.最后从化合物体系电子总态密度随不同掺杂T原子的演化规律解释了自洽计算得到的弹性常数的变化规律.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回