搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP/InGaAsP多量子阱自发辐射谱的解析函数

刘志勇 陈海燕

引用本文:
Citation:

InP/InGaAsP多量子阱自发辐射谱的解析函数

刘志勇, 陈海燕

Analytic function for spontaneous emission spectrum of InP/InGaAsP multi-quantum wells

Liu Zhi-Yong, Chen Hai-Yan
PDF
导出引用
  • 利用洛伦兹线型函数、高斯线型函数和Sech线型函数对InP/InGaAsP多量子阱自发辐射谱进行拟合,采用莱文贝格-马夸特算法,得到上述三种函数的解析表达式.研究结果表明:高斯线型光谱拟合函数的中心波长为1548.651 nm,谱线半极大全宽度为61.42 nm,功率补偿为0.00212 mW,拟合优度为0.99191,残差平方和为2.2650510-6.高斯线型拟合的拟合优度最大,残差平方和最小,且各数据点的残差值分布在0.0001之间,分布比较均匀.高斯线型函数具有较高拟合度.
    The analytic function for the amplified spontaneous emission spectrum of InP/InGaAsP multi-quantum wells is studied by spectrum fitting. Three fitting functions, Lorentz, Gaussian and Sech line shape functions are chosen, and the analytical expressions for the above three functions are obtained with Levenberg-Marquardt algorithm, respectively. The center wavelength of Lorentz line shape function spectrum fitting is 1548.707 nm with 66.23 nm of full-width half maximum (FWHM), -0.00036484 mW power compensation, 0.98294 of R-square and 4.7674310-6 of residual sum of squares; the center wavelength of Gaussian line shape function spectrum fitting is 1548.651 nm with 61.42 nm of FWHM, 0.00212 mW power compensation, 0.99191 of R-square and 2.2650510-6 of residual sum of squares; the center wavelength of Sech line shape function spectrum fitting is 1548.787 nm with 36.99 nm of FWHM, 0.00222 mW power compensation, 0.98128 of R-square and 5.2433110-6 of residual sum of squares. It can be seen that Gaussian line shape function spectrum fitting has the highest R-square and smallest residual sum of squares, and the residual squares of data are symmetrically distributed among 0.0001. Gaussian line shape function spectrum fitting has higher fitting degree. It is demonstrated that InP/InGaAsP multi-quantum wells is a kind of active layer quantum well structure semiconductor material, whose amplified spontaneous emission spectrum line shape belongs to inhomogeneous broadening due to the effect of lattice defects, the corresponding line shape function is Gaussian line shape function, and the amplified spontaneous emission spectrum line shape function can be used for designing the optical passive devices.
      通信作者: 陈海燕, hychen@yangtzeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:60777020)和湖北省自然科学基金(批准号:2008CDB317)资助的课题.
      Corresponding author: Chen Hai-Yan, hychen@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.60777020) and the Natural Science Foundation of Hubei Province,China (Grant No.2008CDB317).
    [1]

    Zhang B, Hou Y B, Lou Z D, Teng F, Liu X J, Hu B, Meng L C, Wu W B 2012 Chin. Phys. B 21 084212

    [2]

    Hariri A, Sarikhani S 2015 Chin. Phys. B 24 043201

    [3]

    Xing R, Xie S Y, Xu J P, Yang Y P 2016 Chin. Phys. B 25 104204

    [4]

    Duan Z G, Huang X D, Zhou N, Xu G H, Chai G Y 2010 Acta Phys. Sin. 59 6193 (in Chinese)[段子刚, 黄晓东, 周宁, 徐光辉, 柴广跃 2010 物理学报 59 6193]

    [5]

    Wang W J, Wang H L, Gong Q, Song Z T, Wang H, Feng S L 2013 Acta Phys. Sin. 62 237104 (in Chinese)[王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林 2013 物理学报 62 237104]

    [6]

    Yang W X, Dai P, Ji L, Tan M, Wu Y Y, Uchida S, Lu S L, Yang H 2016 Appl. Surf. Sci. 389 673

    [7]

    Xi S P, Gu Y, Zhang Y G, Chen X Y, Ma Y J, Zhou L, Du B, Shao X M, Fang J X 2016 Infrared Phys. Techn. 75 65

    [8]

    Amiri I S, Ariannejad M M, Ahmad H 2016 Chin. J. Phys. 54 780

    [9]

    Ke Q, Tan S Y, Liu S T, Lu D, Zhang R K, Wang W, Ji C 2015 J. Semicond. 36 094010

    [10]

    Nikufard M, Rostami Khomami A 2016 Opt. Quant. Electron. 48 296

    [11]

    Kotb A, Maeda J 2012 Optoelectron. Lett. 8 437

    [12]

    Schubert C, Ludwig R, Weber H G 2005 J. Opt. Comm. Rep. 2 171

    [13]

    Won Y Y, Kwon H C, Hong M K, Han S K 2009 Opt. Quant. Electron. 41 113

    [14]

    Huang L R, Huang D X, Zhang X L 2006 J. Semicond. 27 1471 (in Chinese)[黄黎蓉, 黄德修, 张新亮 2006 半导体学报 27 1471]

    [15]

    Yeh C H, Chow C W, Chen J H, Lu S S 2012 Laser Phys. 22 1700

    [16]

    Lin T, Sun H, Zhang H Q, Wang Y G, Lin N, Ma X Y 2015 J. Alloy. Compd. 631 283

    [17]

    Xia M J, Ghafouri-Shiraz H 2016 Opt. Commun. 364 60

    [18]

    Chen H Y 2016 Laser Principles and Technology (Beijing:National Defense Industry Press) pp75-78 (in Chinese)[陈海燕 2016 激光原理与技术(北京:国防工业出版社) 第7578页]

    [19]

    Lazaridis P, Debarge G, Gallion P 1995 Opt. Lett. 20 1160

    [20]

    Chen H Y 2013 Optik 124 3015

    [21]

    Karas E W, Santos S A, Svaiter B F 2016 Comput. Optim. Appl. 65 723

  • [1]

    Zhang B, Hou Y B, Lou Z D, Teng F, Liu X J, Hu B, Meng L C, Wu W B 2012 Chin. Phys. B 21 084212

    [2]

    Hariri A, Sarikhani S 2015 Chin. Phys. B 24 043201

    [3]

    Xing R, Xie S Y, Xu J P, Yang Y P 2016 Chin. Phys. B 25 104204

    [4]

    Duan Z G, Huang X D, Zhou N, Xu G H, Chai G Y 2010 Acta Phys. Sin. 59 6193 (in Chinese)[段子刚, 黄晓东, 周宁, 徐光辉, 柴广跃 2010 物理学报 59 6193]

    [5]

    Wang W J, Wang H L, Gong Q, Song Z T, Wang H, Feng S L 2013 Acta Phys. Sin. 62 237104 (in Chinese)[王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林 2013 物理学报 62 237104]

    [6]

    Yang W X, Dai P, Ji L, Tan M, Wu Y Y, Uchida S, Lu S L, Yang H 2016 Appl. Surf. Sci. 389 673

    [7]

    Xi S P, Gu Y, Zhang Y G, Chen X Y, Ma Y J, Zhou L, Du B, Shao X M, Fang J X 2016 Infrared Phys. Techn. 75 65

    [8]

    Amiri I S, Ariannejad M M, Ahmad H 2016 Chin. J. Phys. 54 780

    [9]

    Ke Q, Tan S Y, Liu S T, Lu D, Zhang R K, Wang W, Ji C 2015 J. Semicond. 36 094010

    [10]

    Nikufard M, Rostami Khomami A 2016 Opt. Quant. Electron. 48 296

    [11]

    Kotb A, Maeda J 2012 Optoelectron. Lett. 8 437

    [12]

    Schubert C, Ludwig R, Weber H G 2005 J. Opt. Comm. Rep. 2 171

    [13]

    Won Y Y, Kwon H C, Hong M K, Han S K 2009 Opt. Quant. Electron. 41 113

    [14]

    Huang L R, Huang D X, Zhang X L 2006 J. Semicond. 27 1471 (in Chinese)[黄黎蓉, 黄德修, 张新亮 2006 半导体学报 27 1471]

    [15]

    Yeh C H, Chow C W, Chen J H, Lu S S 2012 Laser Phys. 22 1700

    [16]

    Lin T, Sun H, Zhang H Q, Wang Y G, Lin N, Ma X Y 2015 J. Alloy. Compd. 631 283

    [17]

    Xia M J, Ghafouri-Shiraz H 2016 Opt. Commun. 364 60

    [18]

    Chen H Y 2016 Laser Principles and Technology (Beijing:National Defense Industry Press) pp75-78 (in Chinese)[陈海燕 2016 激光原理与技术(北京:国防工业出版社) 第7578页]

    [19]

    Lazaridis P, Debarge G, Gallion P 1995 Opt. Lett. 20 1160

    [20]

    Chen H Y 2013 Optik 124 3015

    [21]

    Karas E W, Santos S A, Svaiter B F 2016 Comput. Optim. Appl. 65 723

  • [1] 李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [2] 李元和, 窦秀明, 孙宝权. 金纳米颗粒调控量子点激子自发辐射速率. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211863
    [3] 汪建元, 林光杨, 王佳琪, 李成. 简并态锗在大注入下的自发辐射谱模拟. 物理学报, 2017, 66(15): 156102. doi: 10.7498/aps.66.156102
    [4] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [5] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [6] 孙友文, 刘文清, 谢品华, 方武, 曾议, 司福祺, 李先欣, 詹锴. 差分吸收光谱技术在工业污染源烟气排放监测中的应用. 物理学报, 2013, 62(1): 010701. doi: 10.7498/aps.62.010701
    [7] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [8] 徐勋卫, 刘念华. 双带型光子晶体中双V型四能级原子自发辐射谱中的黑线研究. 物理学报, 2010, 59(5): 3236-3243. doi: 10.7498/aps.59.3236
    [9] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [10] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [11] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [12] 赵 谦, 潘教青, 张 靖, 周 帆, 王宝军, 王鲁峰, 边 静, 安 欣, 赵玲娟, 王 圩. 渐变掩蔽图形超低压选择区域生长法制备高质量InGaAsP多量子阱材料. 物理学报, 2006, 55(6): 2982-2985. doi: 10.7498/aps.55.2982
    [13] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究. 物理学报, 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
    [14] 邵 军. 谱导数法在光谱研究GaInAs/InP和GaInP/AlGaInP多量子阱中的应用. 物理学报, 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
    [15] 沈文忠, 唐文国, 常勇, 李自元, 沈学础, A. DIMOULAS. 调制掺杂的应变In0.60Ga0.40As/In0.52Al0.48As多量子阱结构的光致发光谱研究. 物理学报, 1996, 45(2): 307-313. doi: 10.7498/aps.45.307
    [16] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究. 物理学报, 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [17] 侯永田, 何国山, 张树霖, 彭中灵, 李杰, 袁诗鑫. (CdSe)1(ZnSe)3/ZnSe短周期超晶格多量子阱的共振Ramam谱. 物理学报, 1993, 42(10): 1707-1711. doi: 10.7498/aps.42.1707
    [18] 姚关华, 徐至展, 屈卫星. 强场自电离中自发辐射谱的功率增宽. 物理学报, 1990, 39(1): 30-34. doi: 10.7498/aps.39.30
    [19] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [20] 邓从豪. 自发辐射的线宽与原子能级移位. 物理学报, 1979, 28(3): 383-392. doi: 10.7498/aps.28.383
计量
  • 文章访问数:  2900
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-04
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-07-05

InP/InGaAsP多量子阱自发辐射谱的解析函数

    基金项目: 国家自然科学基金(批准号:60777020)和湖北省自然科学基金(批准号:2008CDB317)资助的课题.

摘要: 利用洛伦兹线型函数、高斯线型函数和Sech线型函数对InP/InGaAsP多量子阱自发辐射谱进行拟合,采用莱文贝格-马夸特算法,得到上述三种函数的解析表达式.研究结果表明:高斯线型光谱拟合函数的中心波长为1548.651 nm,谱线半极大全宽度为61.42 nm,功率补偿为0.00212 mW,拟合优度为0.99191,残差平方和为2.2650510-6.高斯线型拟合的拟合优度最大,残差平方和最小,且各数据点的残差值分布在0.0001之间,分布比较均匀.高斯线型函数具有较高拟合度.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回