搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用

蔡颂 陈根余 周聪 周枫林 李光

引用本文:
Citation:

脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用

蔡颂, 陈根余, 周聪, 周枫林, 李光

Research and application of plasma recoil pressure physical model for pulsed laser ablation material

Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang
PDF
导出引用
  • 分析了脉冲激光烧蚀材料等离子体等温膨胀阶段的物理特性,建立了脉冲激光烧蚀材料等离子体压力三维方程与动力学模型.应用所建模型,数值分析了单脉冲激光烧蚀青铜金刚石砂轮等离子体相关特性,得到等离子体的反冲压力最大值870 Pa出现在约25 ns后,距离砂轮表面距离约0.05 mm处.相关条件下开展脉冲激光烧蚀青铜金刚石砂轮试验,采用高速相机观测烧蚀砂轮过程中的飞溅现象;采用光栅光谱仪测量等离子体空间发射光谱,计算了等离子体电子温度、电子密度以及反冲压力.实验表明脉冲激光烧蚀青铜金刚石砂轮等离子体反冲压力可以不计,同时也验证了气体方程与动力学模型的正确性和可行性,对脉冲光纤激光烧蚀工艺优化具有启示意义.
    In this paper, the physical properties of plasma in the isothermal expansion process when material is ablated by pulsed laser is analyzed. It is shown that the recoil pressure distribution of the plasma near the material surface indicates an exponential decrease as the distance from the material surface increases and the recoil pressure distribution exhibits the characteristics of a Poisson distribution in the X direction; the recoil pressure distribution is in accordance with Maxwell's velocity distribution law in the Y direction; the recoil pressure distribution conforms to a Gaussian distribution in the Z direction. A three-dimensional plasma recoil pressure equation and the plasma kinetic equation for laser-ablation materials are studied. These equations only require parameters to relate to plasma temperature, laser parameters and material properties, thus having a certain diversity. The equations are used for numerically analyzing the pulsed laser ablation of a bronze-bonded diamond grinding wheel. The numerical analysis shows that in the X and Y direction the plasma expansion dimension shows linear growth. After the pulse is ended, the plasma expansion dimension values reach their maxima. The plasma expansion velocity shows nonlinear growth. After the pulse is ended, the expansion velocity first increases and then decreases along the X direction and Y direction. Based on the analyses of the plasma expansion dimension and the plasma expansion velocity, the maximum plasma recoil pressure appears at a location approximately 0.05 mm away from the surface of the grinding wheel after approximately 25 ns. Through calculating the Saha equation, the degree of ionization is 0.0012 at 7506 K, and the maximum plasma recoil pressure value is approximately 870 Pa. The experiments on the pulsed laser ablation of a bronze-bonded diamond grinding wheel under the corresponding conditions are conducted. A high-speed camera is used to observe splash phenomenon in the laser ablation process. A grating spectrometer is used to measure the plasma emission spectrum. According to the Boltzmann plot method, the electron temperature value is calculated to be 7506 K; according to the Stark broadening method, the electron density values range from 7.6451015 to 1.16081016 cm-3 and the recoil pressure values from 792 to 1203 Pa. The experiments show that the recoil pressure during the pulsed laser ablation of bronze-bonded diamond grinding wheel process can be ignored, and the correctness and feasibility of the plasma recoil pressure equation are also verified, which has heuristic significance for optimizing the laser ablation process.
      通信作者: 周枫林, happy9918@sina.com;liguanguw@126.com ; 李光, happy9918@sina.com;liguanguw@126.com
    • 基金项目: 国家自然科学基金(批准号:51375161,11602082)和国家科技重大专项(批准号:2012ZX04003101)资助的课题.
      Corresponding author: Zhou Feng-Lin, happy9918@sina.com;liguanguw@126.com ; Li Guang, happy9918@sina.com;liguanguw@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.51375161,11602082),and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No.2012ZX04003101).
    [1]

    Chang H, Jin X, Chen Z Y 2013 Acta Phys. Sin. 62 195203 (in Chinese)[常浩, 金星, 陈朝阳 2013 物理学报 62 195203]

    [2]

    Yu G, Yang S H, Wang M, Kou S Q, Lin B J, Lu W C 2012 Acta Phys. Sin. 61 092801 (in Chinese)[于歌, 杨慎华, 王蒙, 寇淑清, 林宝君, 卢万春 2012 物理学报 61 092801]

    [3]

    Chen K R, King T C, Hes H J, Leboeuf J N, Geohegan D B, Wood R F, Puretzky A A, Donato J M 1999 Phys. Rev. B 60 8382

    [4]

    Li Z H, Zhang D M, Chen Z J, Huang M T, Guan L, Zhong Z C, Li G D 2001 Acta Phys. Sin. 50 1950 (in Chinese)[李智华, 张端明, 陈中军, 黄明涛, 关丽, 钟志成, 李国栋 2001 物理学报 50 1950]

    [5]

    Zhang Y, Chen G Y, Zhou C, Deng H, Xu J B, Zhou X C 2014 Spectroscopy and Spectral Analysis 34 1153

    [6]

    Saeed A, Khan A W, Jan F, Abrar M, Khalid M, Zakaullah M 2013 Appl. Surf. Sci. 273 173

    [7]

    Koenig S P, Wang L D, Pellegrino J, Bunch J S 2012 Nature Nanotechnol. 7 728

    [8]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843

    [9]

    Cai S, Chen G Y, Zhou C 2015 Appl. Surf. Sci. 355 461

    [10]

    Garrelie F, Aubreton J, Catheriont A 1998 J. Appl. Phys. 83 5075

    [11]

    Chen G Y, Deng H, Xu J B, Li Z G, Zhang L 2013 Acta Phys. Sin. 62 144204 (in Chinese)[陈根余, 邓辉, 徐建波, 李宗根, 张玲 2013 物理学报 62 144204]

    [12]

    Chen G Y, Cai S, Zhou C 2015 Diam. Relat. Mater. 60 99

    [13]

    Hafeez S, Shaikh N M, Rashied B, et al. 2008 J. Appl. Phys. 103 083117

    [14]

    Luo W F, Zhao X X, Sun Q B, Gao C X, Tang J, Wang H J, Zhao W 2010 Pram. J. Phys. 74 945

    [15]

    Griem H R 1964 Plasma Spectroscopy (New York:McGraw-Hill) pp1-55

    [16]

    Shakeel H, Arshad S, Haq S U, Nadeem A 2016 Phys. Plasmas 23 053504

  • [1]

    Chang H, Jin X, Chen Z Y 2013 Acta Phys. Sin. 62 195203 (in Chinese)[常浩, 金星, 陈朝阳 2013 物理学报 62 195203]

    [2]

    Yu G, Yang S H, Wang M, Kou S Q, Lin B J, Lu W C 2012 Acta Phys. Sin. 61 092801 (in Chinese)[于歌, 杨慎华, 王蒙, 寇淑清, 林宝君, 卢万春 2012 物理学报 61 092801]

    [3]

    Chen K R, King T C, Hes H J, Leboeuf J N, Geohegan D B, Wood R F, Puretzky A A, Donato J M 1999 Phys. Rev. B 60 8382

    [4]

    Li Z H, Zhang D M, Chen Z J, Huang M T, Guan L, Zhong Z C, Li G D 2001 Acta Phys. Sin. 50 1950 (in Chinese)[李智华, 张端明, 陈中军, 黄明涛, 关丽, 钟志成, 李国栋 2001 物理学报 50 1950]

    [5]

    Zhang Y, Chen G Y, Zhou C, Deng H, Xu J B, Zhou X C 2014 Spectroscopy and Spectral Analysis 34 1153

    [6]

    Saeed A, Khan A W, Jan F, Abrar M, Khalid M, Zakaullah M 2013 Appl. Surf. Sci. 273 173

    [7]

    Koenig S P, Wang L D, Pellegrino J, Bunch J S 2012 Nature Nanotechnol. 7 728

    [8]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843

    [9]

    Cai S, Chen G Y, Zhou C 2015 Appl. Surf. Sci. 355 461

    [10]

    Garrelie F, Aubreton J, Catheriont A 1998 J. Appl. Phys. 83 5075

    [11]

    Chen G Y, Deng H, Xu J B, Li Z G, Zhang L 2013 Acta Phys. Sin. 62 144204 (in Chinese)[陈根余, 邓辉, 徐建波, 李宗根, 张玲 2013 物理学报 62 144204]

    [12]

    Chen G Y, Cai S, Zhou C 2015 Diam. Relat. Mater. 60 99

    [13]

    Hafeez S, Shaikh N M, Rashied B, et al. 2008 J. Appl. Phys. 103 083117

    [14]

    Luo W F, Zhao X X, Sun Q B, Gao C X, Tang J, Wang H J, Zhao W 2010 Pram. J. Phys. 74 945

    [15]

    Griem H R 1964 Plasma Spectroscopy (New York:McGraw-Hill) pp1-55

    [16]

    Shakeel H, Arshad S, Haq S U, Nadeem A 2016 Phys. Plasmas 23 053504

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [3] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制. 物理学报, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [6] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [7] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [8] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [9] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究. 物理学报, 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [10] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [11] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [17] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [18] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  4970
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-24
  • 修回日期:  2017-05-03
  • 刊出日期:  2017-07-05

/

返回文章
返回