搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb掺杂-TiAl金属间化合物的电子结构与力学性能

陈治鹏 马亚楠 林雪玲 潘凤春 席丽莹 马治 郑富 汪燕青 陈焕铭

引用本文:
Citation:

Nb掺杂-TiAl金属间化合物的电子结构与力学性能

陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭

Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound

Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理方法计算了Nb掺杂-TiAl金属间化合物的结构参数、能带结构、电子态密度及弹性常数.结果表明:Nb替代Ti掺杂相比Nb替代Al掺杂的形成能低,Nb在替位掺杂时更倾向于取代Ti原子形成稳定的结构,Nb替代Ti掺杂能够提高-TiAl金属间化合物的抵御塑性变形能力、断裂强度和延展性;与Nb替代Ti掺杂相比,Nb替代Al掺杂同样增强-TiAl金属间化合物的断裂强度且其增强延展性的效果更好,但抵御塑性变形的能力有所削弱.
    This investigation aims at an Nb-doped -TiAl intermetallic compound system in which part of Ti or Al atoms are substituted by Nb atoms. The structural parameters, the energy band structures, the electronic densities of states and the elastic constants of Nb-doped -TiAl intermetallic compound are calculated and studied by using the first-principles method based on the density functional theory and other physical theory. The first-principle calculations presented here are based on electronic density-functional theory framework. The ultrasoft pseudopotentials and a plane-wave basis set with a cut-off energy of 320 eV are used. The generalized gradient approximation refined by Perdew and Zunger is employed for determining the exchange-correlation energy. Brillouin zone is set to be within 333 k point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 1.010-6 eV/atom. In view of geometry optimization, it is shown that doping with Nb can change the structural symmetry of the -TiAl intermetallic compound. The calculated formation energies indicate that the formation energy of the system in which Ti atom is replaced by Nb atom is smaller than that of Al atom replaced by Nb atom. Accordingly, they tend to substitute Ti atom when Nb atoms are introduced into the -TiAl system. The calculated band structures of Nb-doped -TiAl system show that they all have metallic conductivities, which implies that the brittleness of -TiAl intermetallic compound could be tailored by Nb-doping. The partial densities of states of the Nb-doped and pure -TiAl systems indicate that the intensity of covalent bond between Ti atom and Nb atom is weaker than covalent bond between Ti atom and Al atom while the Ti atoms are replaced by Nb atoms in the -TiAl system. What is more, the density of states near Fermi energy increases after Al atoms has been replaced by Nb atoms in the -TiAl system. This is an important factor for improving the ductility of -TiAl intermetallic compound. The calculated elastic constants, bulk modulus and shear modulus of Nb-doped -TiAl systems indicate that the ductility and the fracture strength of Nb-doped -TiAl system are both better than those of pure -TiAl system, especially in the system where part of Al atoms are replaced by Nb atoms. The plastic deformation capacity of Nb-doped -TiAl system is thus improved comparatively.
      通信作者: 陈焕铭, bschm@163.com
    • 基金项目: 国家自然科学基金(批准号:11662014,11764032)和西部一流大学重大创新项目(批准号:ZKZD2017006)资助的课题.
      Corresponding author: Chen Huan-Ming, bschm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11662014, 11764032) and the Major Innovation Projects for Building First-class Universities in China's Western Region (Grant No. ZKZD2017006).
    [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201

    [4]

    Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231

    [5]

    Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563

    [6]

    Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115

    [7]

    Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951

    [8]

    Chao J 2008 Acta Mater. 56 6224

    [9]

    Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467

    [10]

    Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198

    [11]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [12]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [13]

    Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [15]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [16]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [17]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 物理学报 58 S224]

    [18]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 物理学报 59 7278]

    [19]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [20]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1

    [21]

    Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58

    [22]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [23]

    Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80

    [24]

    Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280

    [25]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689

    [26]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [27]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 物理学报 65 046102]

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [30]

    Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 349

    [32]

    Pugh S F 1954 Phios. Mag. 45 823

    [33]

    Gao F M 2017 Sci. Rep. 7 40276

    [34]

    Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]

  • [1]

    Rananujan R V 2000 Int. Mater. Rev. 45 217

    [2]

    Chen Y Y, Kong F T, Han J C, Chen Z Y, Tian J 2005 Intermetallics 13 263

    [3]

    Wolf W, Podloucky R, Rogl P, Erschbaumer H 1996 Intermetallics 4 201

    [4]

    Jones C, Farkas C 1996 Comp. Mater. Sci. 6 231

    [5]

    Song Y, Yang R, Li D, Hu Z Q, Guo Z X 2000 Intermetallics 8 563

    [6]

    Song Y, Guo Z X, Yang R 2002 J. L. Met. 2 115

    [7]

    Hao Y L, Yang R, Song Y, Cui Y Y, Li D, Niinomi M 2004 Intermetallics 12 951

    [8]

    Chao J 2008 Acta Mater. 56 6224

    [9]

    Tang P Y, Tang B Y, Su X P 2011 Comp. Mater. Sci. 50 1467

    [10]

    Wang L, Shang J X, Wang F H, Zhang Y 2013 Appl. Surf. Sci. 276 198

    [11]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [12]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [13]

    Pan F C, Chen Z P, Lin X L, Zheng F, Wang X M, Chen H M 2016 Chin. Phys. B 25 096108

    [14]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [15]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [16]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [17]

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 S224 (in Chinese)[李虹, 王绍青, 叶恒强 2009 物理学报 58 S224]

    [18]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese)[吴小霞, 王乾恩, 王福合, 周云松 2010 物理学报 59 7278]

    [19]

    Zhu G L, Shu D, Dai Y B, Wang J, Sun B D 2009 Acta Phys. Sin. 58 S210 (in Chinese)[祝国梁, 疏达, 戴永兵, 王俊, 孙宝德 2009 物理学报 58 S210]

    [20]

    Song Y, Xing F J, Dai J H, Yang R 2014 Intermetallics 49 1

    [21]

    Wang B D, Dai J H, Wu X, Song Y, Yang R 2015 Intermetallics 60 58

    [22]

    Karre R, Niranjan M K, Dey S R 2015 Mater. Sci. Eng. C 50 52

    [23]

    Zhang S Z, Cui H, Li M M, Yu H, Vitos L, Yang R, Hu Q M 2016 Mater. Design. 110 80

    [24]

    Li Z Z, Wei Y, Zhou H B, Lu G H 2016 Eur. Phys. J. B 89 280

    [25]

    Hu H, Wu X Z, Wang R, Li W G, Liu Q 2016 J. Alloy. Compd. 658 689

    [26]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [27]

    Song Q G, Qin G S, Yang B B, Jiang Q J, Hu X L 2016 Acta Phys. Sin. 65 046102 (in Chinese)[宋庆功, 秦国顺, 杨宝宝, 将清杰, 胡雪兰 2016 物理学报 65 046102]

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [29]

    Kawabata T, Tamura T, Izumi O 1993 Metal. Trans. A 24 141

    [30]

    Nye J F 1985 Physical Properties of Crystal Their Representation by Tensors and Matrices (Oxford:Oxford University Press) pp140-141

    [31]

    Hill R 1952 Proc. Phys. Soc. 65 349

    [32]

    Pugh S F 1954 Phios. Mag. 45 823

    [33]

    Gao F M 2017 Sci. Rep. 7 40276

    [34]

    Lin X L, Chen Z P, Pan F C, Chen H M 2016 J. Ningxia University (Natural Science Edition) 37 332 (in Chinese)[林雪玲, 陈治鹏, 潘凤春, 陈焕铭 2016 宁夏大学学报(自然科学版) 37 332]

  • [1] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [2] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [3] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [4] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [5] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [6] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [7] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [8] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [9] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [10] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [11] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [12] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [15] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [16] 杜 娟, 季振国. Ⅲ族元素掺杂对SnO2电子结构及电学性能的影响. 物理学报, 2007, 56(4): 2388-2392. doi: 10.7498/aps.56.2388
    [17] 马国佳, 刘喜亮, 张华芳, 武洪臣, 彭丽平, 蒋艳莉. 乙炔气体流量对纳米TiC类金刚石复合膜的化学结构及力学性能影响. 物理学报, 2007, 56(4): 2377-2381. doi: 10.7498/aps.56.2377
    [18] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [19] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
计量
  • 文章访问数:  3309
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-13
  • 刊出日期:  2017-10-05

Nb掺杂-TiAl金属间化合物的电子结构与力学性能

  • 1. 宁夏大学物理与电子电气工程学院, 银川 750021
  • 通信作者: 陈焕铭, bschm@163.com
    基金项目: 国家自然科学基金(批准号:11662014,11764032)和西部一流大学重大创新项目(批准号:ZKZD2017006)资助的课题.

摘要: 运用基于密度泛函理论的第一性原理方法计算了Nb掺杂-TiAl金属间化合物的结构参数、能带结构、电子态密度及弹性常数.结果表明:Nb替代Ti掺杂相比Nb替代Al掺杂的形成能低,Nb在替位掺杂时更倾向于取代Ti原子形成稳定的结构,Nb替代Ti掺杂能够提高-TiAl金属间化合物的抵御塑性变形能力、断裂强度和延展性;与Nb替代Ti掺杂相比,Nb替代Al掺杂同样增强-TiAl金属间化合物的断裂强度且其增强延展性的效果更好,但抵御塑性变形的能力有所削弱.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回