搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合散斑干涉技术的阵列式洛伦兹力微颗粒探测方法

代尚军 吴思进 王晓东 史祎诗

引用本文:
Citation:

融合散斑干涉技术的阵列式洛伦兹力微颗粒探测方法

代尚军, 吴思进, 王晓东, 史祎诗

Lorentz force particle analyzer with an array probe based on speckle pattern interferometry

Dai Shang-Jun, Wu Si-Jin, Wang Xiao-Dong, Shi Yi-Shi
PDF
导出引用
  • 提出了一种阵列式洛伦兹力微颗粒探测法,该方法结合了散斑干涉技术的全场位移测量、分辨率高等特性与洛伦兹力微颗粒探测法中探测量为矢量、可探测内部缺陷等优势,探索了一种实时、在线、原位的缺陷检测方法.针对阵列式洛伦兹力微颗粒探测法中阵列式排布的多个悬臂梁位移测量问题,设计了大剪切数字散斑干涉系统,使来自于被测悬臂梁和安装悬臂梁的横梁的反射光发生干涉,形成剪切干涉,通过对相位差进行分析获得悬臂梁的绝对位移,并且以洛伦兹力及悬臂梁末端的位移量为中间量建立了散斑干涉相位差与缺陷体积之间的关系.本文通过实验成功获得了悬臂梁全场位移量以及缺陷的体积,通过散斑干涉的方法测量悬臂梁位移量理论分辨率可达30 nm,这使洛伦兹力微颗粒探测法具备了微米级缺陷的探测能力.
    A new contactless technique called Lorentz force particle analyzer (LFPA) with an array probe for detecting the flaws in metallic material is presented in this paper. Based on the principle of LFPA, the shape and size of the flaw or the direction of the crack can be obtained by analyzing the pulses of the force acting on the permanent magnet. In the LFPA system, the small Lorentz force on the magnet is measured by a laser-cantilever system with high sensitivity, which operates in a similar principle to that of an atomic force microscope. The traditional displacement detecting method in the LFPA is not suitable for the array probe presented in this paper due to its complex structure. Therefore, speckle pattern interferometry is introduced into the LPFA. The speckle pattern interferometry can measure not only the out-of-plane displacement of the multiple cantilever in the array probe, or of slopes of deformation, but also the in-plane displacement. Those advantages make the speckle pattern interferometry a useful tool in the LFPA for analysing the shapes of the flaws and the directions of the cracks. In this paper, a Michelson-type shear of graphic setup with enlarged angle of view is built to measure the displacement of the cantilever which is deformed by the flaws in the sample. Four frames of shear under several grams before and after the deformation are captured and recorded by a digital camera. The phase difference is processed for calculating the displacement with the software which is designed for the LFPA. A full-field measurement of the cantilever displacement is achieved and the relationship between the phase difference and the volume of the flaws is also obtained successfully. The utilization of the speckle pattern interferometry technique in the LFPA leads to the invention of a new real-time, online, in-situ contactless technique of detecting the shapes of the internal flaws and the directions of the cracks.
      通信作者: 王晓东, xiaodong.wang@ucas.ac.cn;sysopt@126.com ; 史祎诗, xiaodong.wang@ucas.ac.cn;sysopt@126.com
    • 基金项目: 国家自然科学基金(批准号:51374190)和中国科学院重大装备项目(批准号:YZ201567)资助的课题.
      Corresponding author: Wang Xiao-Dong, xiaodong.wang@ucas.ac.cn;sysopt@126.com ; Shi Yi-Shi, xiaodong.wang@ucas.ac.cn;sysopt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51374190) and the Major Equipment Fund of Chinese Academy of Sciences (Grant No. YZ201567).
    [1]

    Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802 (in Chinese)[孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章2016物理学报65 167802]

    [2]

    Sun M J, Cheng X Z, Wang Y, Zhang X, Shen Y, Feng N Z 2016 Acta Phys. Sin. 65 038105 (in Chinese)[孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章2016物理学报65 038105]

    [3]

    Wu D H, Liu Z T, Wang X H, Su L X 2017 Acta Phys. Sin. 66 048102 (in Chinese)[吴德会, 刘志天, 王晓红, 苏令锌2017物理学报66 048102]

    [4]

    Liu L, Meng G 2006 Nondestruct.Test. 28 28 (in Chinese)[刘龙, 孟光2006无损检测28 28]

    [5]

    GaoY, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese)[高越, 符师桦, 蔡玉龙, 程腾, 张青川2014物理学报63 066201]

    [6]

    Wang X D, Andr T, Moreau R, Tan Y Q, Dai S J, Tao Z 2016 J. Appl. Phys. 120 188

    [7]

    Moreau R, Tao Z, Wang X D 2016 Appl. Phys. Lett. 109 014903

    [8]

    Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306

    [9]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013物理学报62 064206]

    [10]

    Shi Y S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese)[史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟2011物理学报60 034202]

    [11]

    Shi Y S, Li T, Wang Y L, Gao Q K 2013 Opt. Lett. 38 1425

    [12]

    Wu X Y, Yu Y J, L L J 2013 Laser Optoelectr. Prog. 50 18 (in Chinese)[伍小燕, 于瀛洁, 吕丽军2013激光与光电子学进展50 18]

    [13]

    Wu X P, He S P, Li Z C 1980 Acta Phys. Sin. 29 1142 (in Chinese)[伍小平, 何世平, 李志超1980物理学报29 1142]

    [14]

    Wang X D, Yurii K, Andr T 2012 Measur. Sci. Technol. 23 045005

    [15]

    Tan Y Q, Wang X D, Moreau R 2015 Measur. Sci. Technol. 26 035602

    [16]

    Thess A, Votyakov E, Knaepen B, Zikanov O 2007 New J. Phys. 9 299

    [17]

    Thess A, Votyakov E, Kolesnikov Y 2006 Phys. Rev. Lett. 96 164501

    [18]

    Wu S J, He X, Yang L 2011 Appl. Opt. 50 3789

    [19]

    Wu S J, Zhu L Q, Pan S Y, Yang L X 2016 Opt. Lett. 41 1050

    [20]

    Wu S J, Zhu L Q, Feng Q B, Yang L X 2012 Opt. Lasers Engineer. 50 1260

    [21]

    Li T, Shi Y S 2015 Opt. Express 23 21384

    [22]

    Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306

    [23]

    Li T, Shi Y S 2016 J. Opt. 18 035702

  • [1]

    Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802 (in Chinese)[孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章2016物理学报65 167802]

    [2]

    Sun M J, Cheng X Z, Wang Y, Zhang X, Shen Y, Feng N Z 2016 Acta Phys. Sin. 65 038105 (in Chinese)[孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章2016物理学报65 038105]

    [3]

    Wu D H, Liu Z T, Wang X H, Su L X 2017 Acta Phys. Sin. 66 048102 (in Chinese)[吴德会, 刘志天, 王晓红, 苏令锌2017物理学报66 048102]

    [4]

    Liu L, Meng G 2006 Nondestruct.Test. 28 28 (in Chinese)[刘龙, 孟光2006无损检测28 28]

    [5]

    GaoY, Fu S H, Cai Y L, Cheng T, Zhang Q C 2014 Acta Phys. Sin. 63 066201 (in Chinese)[高越, 符师桦, 蔡玉龙, 程腾, 张青川2014物理学报63 066201]

    [6]

    Wang X D, Andr T, Moreau R, Tan Y Q, Dai S J, Tao Z 2016 J. Appl. Phys. 120 188

    [7]

    Moreau R, Tao Z, Wang X D 2016 Appl. Phys. Lett. 109 014903

    [8]

    Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306

    [9]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013物理学报62 064206]

    [10]

    Shi Y S, Wang Y L, Xiao J, Yang Y H, Zhang J J 2011 Acta Phys. Sin. 60 034202 (in Chinese)[史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟2011物理学报60 034202]

    [11]

    Shi Y S, Li T, Wang Y L, Gao Q K 2013 Opt. Lett. 38 1425

    [12]

    Wu X Y, Yu Y J, L L J 2013 Laser Optoelectr. Prog. 50 18 (in Chinese)[伍小燕, 于瀛洁, 吕丽军2013激光与光电子学进展50 18]

    [13]

    Wu X P, He S P, Li Z C 1980 Acta Phys. Sin. 29 1142 (in Chinese)[伍小平, 何世平, 李志超1980物理学报29 1142]

    [14]

    Wang X D, Yurii K, Andr T 2012 Measur. Sci. Technol. 23 045005

    [15]

    Tan Y Q, Wang X D, Moreau R 2015 Measur. Sci. Technol. 26 035602

    [16]

    Thess A, Votyakov E, Knaepen B, Zikanov O 2007 New J. Phys. 9 299

    [17]

    Thess A, Votyakov E, Kolesnikov Y 2006 Phys. Rev. Lett. 96 164501

    [18]

    Wu S J, He X, Yang L 2011 Appl. Opt. 50 3789

    [19]

    Wu S J, Zhu L Q, Pan S Y, Yang L X 2016 Opt. Lett. 41 1050

    [20]

    Wu S J, Zhu L Q, Feng Q B, Yang L X 2012 Opt. Lasers Engineer. 50 1260

    [21]

    Li T, Shi Y S 2015 Opt. Express 23 21384

    [22]

    Li T, Wang Y L, Zhang J, Shi Y S 2015 Appl. Opt. 54 306

    [23]

    Li T, Shi Y S 2016 J. Opt. 18 035702

  • [1] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [3] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [4] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] 孙明健, 程星振, 王艳, 章欣, 沈毅, 冯乃章. 基于光声信号的高铁钢轨表面缺陷检测方法. 物理学报, 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [6] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [7] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [8] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [9] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [10] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术. 物理学报, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [11] 周先春, 林万涛, 林一骅, 姚静荪, 莫嘉琪. 一类扰动洛伦兹系统的解法. 物理学报, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [12] 郝宽胜, 黄松岭, 赵伟, 王珅. 基于二阶矢量位的矩形截面回折线圈阻抗和脉冲磁场的解析建模与计算. 物理学报, 2011, 60(7): 078103. doi: 10.7498/aps.60.078103
    [13] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究. 物理学报, 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [14] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [15] 周国泉. 洛伦兹光束经光阑失调傍轴光学系统的传输. 物理学报, 2009, 58(9): 6185-6191. doi: 10.7498/aps.58.6185
    [16] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [17] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [18] 周国泉. 洛伦兹光束的传输特性研究. 物理学报, 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [19] 师绍猛, 陈荣昌, 薛艳玲, 任玉琦, 杜国浩, 邓 彪, 谢红兰, 肖体乔. 强吸收介质内部低Z材料结构的X射线显微成像研究. 物理学报, 2008, 57(10): 6319-6328. doi: 10.7498/aps.57.6319
    [20] 姚焜, 许广宇, 郭光灿, 彭虎, 周佩玲. 双光束干涉产生的动态散斑. 物理学报, 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
计量
  • 文章访问数:  2879
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-05
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-10-05

融合散斑干涉技术的阵列式洛伦兹力微颗粒探测方法

    基金项目: 国家自然科学基金(批准号:51374190)和中国科学院重大装备项目(批准号:YZ201567)资助的课题.

摘要: 提出了一种阵列式洛伦兹力微颗粒探测法,该方法结合了散斑干涉技术的全场位移测量、分辨率高等特性与洛伦兹力微颗粒探测法中探测量为矢量、可探测内部缺陷等优势,探索了一种实时、在线、原位的缺陷检测方法.针对阵列式洛伦兹力微颗粒探测法中阵列式排布的多个悬臂梁位移测量问题,设计了大剪切数字散斑干涉系统,使来自于被测悬臂梁和安装悬臂梁的横梁的反射光发生干涉,形成剪切干涉,通过对相位差进行分析获得悬臂梁的绝对位移,并且以洛伦兹力及悬臂梁末端的位移量为中间量建立了散斑干涉相位差与缺陷体积之间的关系.本文通过实验成功获得了悬臂梁全场位移量以及缺陷的体积,通过散斑干涉的方法测量悬臂梁位移量理论分辨率可达30 nm,这使洛伦兹力微颗粒探测法具备了微米级缺陷的探测能力.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回