搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砷化镓光电阴极光谱响应与吸收率关系分析

赵静 余辉龙 刘伟伟 郭婧

引用本文:
Citation:

砷化镓光电阴极光谱响应与吸收率关系分析

赵静, 余辉龙, 刘伟伟, 郭婧

Analysis of the relation between spectral response and absorptivity of GaAs photocathode

Zhao Jing, Yu Hui-Long, Liu Wei-Wei, Guo Jing
PDF
导出引用
  • 为了研究砷化镓(GaAs)光电阴极光谱响应与吸收率曲线间的关系,采用分子束外延法(MBE)和金属有机化合物化学气相沉积法(MOCVD)制备了两类GaAs光电阴极,并测试得到了样品吸收率和光谱响应实验曲线.对每个样品的这两条曲线在同一坐标系中做最大值归一化处理,将归一的光谱响应曲线与归一的吸收率曲线做除法,得到了类似光电阴极表面势垒的形状.结果表明,两种方法制备的光电阴极光谱响应曲线相比吸收率曲线都发生了红移,MBE样品偏移量稍大于MOCVD样品.短波吸收率不截止,光谱响应截止于500 nm左右;可见光波段上,光谱响应曲线的峰值位置相比吸收率曲线红移了几百meV;近红外区域,光谱响应曲线的截止位置相比吸收率曲线红移了几个meV.MOCVD样品中杂质对带隙的影响更小,光谱响应相比吸收率发生的能量偏移更小.这些结论对提高GaAs光电阴极光电发射性能有指导意义.
    In order to study the relation between spectral response and absorptivity of GaAs photocathode, two kinds of GaAs photocathodes are prepared by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), respectively. The samples grown by the MBE include varying doping GaAs photocathodes with different values of emission layer thickness from A to E. The thickness of GaAs emission layer is 1.6 μm or 2 μm. The Al component is 0.5 or 0.63. The samples grown by the MOCVD include varying doping or various component GaAs photocathodes with different values of emission layer thickness and different window layer components from F to J. The thickness values of GaAs emission layer are 1.4 μm, 1.6 μm or 1.8 μm, respectively. The Al component is 0.7 or varies from 0.9 to 0. The doping concentration of the GaAs emission layer is divided into 8 sections between 1×1018 cm-3 and 1×1019 cm-3. The experimental spectral response curves for all samples are obtained by the optical spectrum analyzer. And the experimental reflectivity and transmittivity curves are measured by the ultraviolet visible near infrared spectrohootometer. Based on the law of energy conservation, the absorptivity curves are obtained according to the experimental reflectivity and transmittivity. In the same coordinate system, both the curves are obtained by unitary processing according to the max. A similar surface barrier can be given by dividing the normalized absorptivity by the normalized spectral response, and those are termed the similar I barrier and the similar Ⅱ barrier, respectively. The results indicate that for both the GaAs photocathodes, the experimental spectral response curves both tend to move to the infrared band compared with the experimental absorptivity curves. The average energy differences between absorptivity and spectral response are calculated to be 0.3101 eV for the MBE sample, and 0.3025 eV for the MOCVD sample, respectively. The red-shifts of the photocathodes grown by MBE are a bit bigger than those of the photocathodes grown by MOCVD. In the shortwave region, the absorptivity is very large, but the spectral response cuts off nearby 500 nm. In the visible wavelength region, the peak position of the spectral response curve shifts toward the infrared band for several hundred meV in comparison with the absorptivity curve. In the near infrared region, a red shift of several meV appears at the cut-off position of the spectral response curve in comparison with the absorptivity curve. The results have the guiding significance for improving the photoemission performance of wide-spectrum GaAs photocathode by optimizing the optical performance.
      通信作者: 赵静, zhaojing7319@njit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61701220,61704075,61771245)、江苏省高等学校自然科学研究项目(批准号:17KJB510023)和南京工程学院基础研究专项基金(批准号:JCYJ201614)资助的课题.
      Corresponding author: Zhao Jing, zhaojing7319@njit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61701220, 61704075, 61771245), Jiangsu Higher School Natural Science Research Project, China (Grant No. 17KJB510023), and the Special Foundation for Basic Research Program, China (Grant No. JCYJ201614).
    [1]

    Drouhin H J, Hermann C, Lampel G 1985 Phys. Rev. B 31 3859

    [2]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107

    [3]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [4]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese) [邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 物理学报 56 6109]

    [5]

    Ding H B, Pang W N, Liu Y B, Shang R C 2005 Acta Phys. Sin. 54 4097 (in Chinese) [丁海兵, 庞文宁, 刘义保, 尚仁成 2005 物理学报 54 4097]

    [6]

    Spindt C J, Besser R S, Cao R 1989 Appl. Phys. Lett. 54 1148

    [7]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149

    [8]

    Mitsuno K, Masuzawa T, Hatanaka Y, Neo Y, Mimura H 2015 3rd International Conference on Nanotechnologies and Biomedical Engineering September 23-26 2015 Chisinau, Republic of Moldova 55 p163

    [9]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [10]

    Jin X, Cotta A A C, Chen G, N’Diaye A T, Schmid A K, Yamamoto N 2014 J. Appl. Phys. 116 174509

    [11]

    Moré S, Tanaka S, Fujii Y, Kamada M 2000 Surf. Sci.454 161

    [12]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectrosc. Spectral Anal. 29 300 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 300]

    [13]

    Jiao G C, Liu Z T, Guo H, Zhang Y J 2016 Chin. Phys. B 25 048505

    [14]

    Zou J J, Ge X W, Zhang Y J, Deng W J, Zhu Z F, Wang W L, Peng X C, Chen Z P, Chang B K 2016 Opt. Express 24 4632

    [15]

    Yu X H 2016 J. Mater. Sci. 51 8259

    [16]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T, Chang B K 2015 Appl. Opt. 54 8521

    [17]

    Yang M Z, Chang B K, Rao W F 2016 Optik 127 10710

    [18]

    Yang M Z, Jin M C, Chang B K 2016 Appl. Opt. 55 8732

    [19]

    Zou J J, Yang Z, Qiao J L, Gao P, Chang B K 2007 Proc. SPIE 6782 67822R

    [20]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20 047801

    [21]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413

    [22]

    Zhao J, Zhang Y J, Chang B K, Zhang J J, Xiong Y J, Shi F, Cheng H C, Cui D X 2011 Appl. Opt. 50 6140

  • [1]

    Drouhin H J, Hermann C, Lampel G 1985 Phys. Rev. B 31 3859

    [2]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107

    [3]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [4]

    Zou J J, Chang B K, Yang Z, Gao P, Qiao J L, Zeng Y P 2007 Acta Phys. Sin. 56 6109 (in Chinese) [邹继军, 常本康, 杨智, 高频, 乔建良, 曾一平 2007 物理学报 56 6109]

    [5]

    Ding H B, Pang W N, Liu Y B, Shang R C 2005 Acta Phys. Sin. 54 4097 (in Chinese) [丁海兵, 庞文宁, 刘义保, 尚仁成 2005 物理学报 54 4097]

    [6]

    Spindt C J, Besser R S, Cao R 1989 Appl. Phys. Lett. 54 1148

    [7]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149

    [8]

    Mitsuno K, Masuzawa T, Hatanaka Y, Neo Y, Mimura H 2015 3rd International Conference on Nanotechnologies and Biomedical Engineering September 23-26 2015 Chisinau, Republic of Moldova 55 p163

    [9]

    Chanlek N, Herbert J D, Jones R M, Jones L B, Middleman K J, Militsyn B L 2014 J. Phys. D: Appl. Phys. 47 055110

    [10]

    Jin X, Cotta A A C, Chen G, N’Diaye A T, Schmid A K, Yamamoto N 2014 J. Appl. Phys. 116 174509

    [11]

    Moré S, Tanaka S, Fujii Y, Kamada M 2000 Surf. Sci.454 161

    [12]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectrosc. Spectral Anal. 29 300 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 300]

    [13]

    Jiao G C, Liu Z T, Guo H, Zhang Y J 2016 Chin. Phys. B 25 048505

    [14]

    Zou J J, Ge X W, Zhang Y J, Deng W J, Zhu Z F, Wang W L, Peng X C, Chen Z P, Chang B K 2016 Opt. Express 24 4632

    [15]

    Yu X H 2016 J. Mater. Sci. 51 8259

    [16]

    Zou J J, Zhang Y J, Deng W J, Peng X C, Jiang S T, Chang B K 2015 Appl. Opt. 54 8521

    [17]

    Yang M Z, Chang B K, Rao W F 2016 Optik 127 10710

    [18]

    Yang M Z, Jin M C, Chang B K 2016 Appl. Opt. 55 8732

    [19]

    Zou J J, Yang Z, Qiao J L, Gao P, Chang B K 2007 Proc. SPIE 6782 67822R

    [20]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20 047801

    [21]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413

    [22]

    Zhao J, Zhang Y J, Chang B K, Zhang J J, Xiong Y J, Shi F, Cheng H C, Cui D X 2011 Appl. Opt. 50 6140

  • [1] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [2] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [3] 曲冠男, 李硕, 孙美娇, 徐胜楠, 刘煜, 孙成林, 门志伟, 里佐威. 温度对β胡萝卜素结构有序的影响. 物理学报, 2013, 62(7): 077801. doi: 10.7498/aps.62.077801
    [4] 杨少鹏, 李娜, 李光, 史江波, 李晓苇, 傅广生. 混合溶剂对P3HT:PCBM基太阳能电池的影响. 物理学报, 2013, 62(1): 014702. doi: 10.7498/aps.62.014702
    [5] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [6] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [7] 杨永富, 富容国, 马力, 王晓晖, 张益军. 反射式GaN光电阴极表面势垒对量子效率衰减的影响. 物理学报, 2012, 61(12): 128504. doi: 10.7498/aps.61.128504
    [8] 杨永富, 富容国, 张益军, 王晓晖, 邹继军. GaN光电阴极表面势垒对电子逸出几率的影响. 物理学报, 2012, 61(6): 068501. doi: 10.7498/aps.61.068501
    [9] 李世帅, 冯秀鹏, 黄金昭, 刘春彦, 张仲, 陶冶微. Zn1-x-yNaxCoyO薄膜的脉冲激光沉积制备及表征. 物理学报, 2011, 60(5): 057105. doi: 10.7498/aps.60.057105
    [10] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究. 物理学报, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [11] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [12] 乔建良, 常本康, 杜晓晴, 牛军, 邹继军. 反射式负电子亲和势GaN光电阴极量子效率衰减机理研究. 物理学报, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [13] 王光昶, 郑志坚, 谷渝秋, 温贤伦, 陈 涛, 张 婷, 张建炜. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [14] 王 笑, 潘安练, 刘 丹, 白永强, 张朝晖, 邹炳锁, 朱 星. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [15] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [16] 郜小勇, 李 瑞, 陈永生, 卢景霄, 刘 萍, 冯团辉, 王红娟, 杨仕娥. 微晶硅薄膜的结构及光学性质的研究. 物理学报, 2006, 55(1): 98-101. doi: 10.7498/aps.55.98
    [17] 刘向绯, 蒋昌忠, 任 峰, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究. 物理学报, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [18] 张 勇, 唐超群, 戴 君. 锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验. 物理学报, 2005, 54(1): 323-327. doi: 10.7498/aps.54.323
    [19] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] 王晓东, 刘会赟, 牛智川, 封松林. 不同组分InxGa1-xAs(0≤x≤0.3)覆盖层对自组织InAs量子点的影响. 物理学报, 2000, 49(11): 2230-2234. doi: 10.7498/aps.49.2230
计量
  • 文章访问数:  3310
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-08-28
  • 刊出日期:  2017-11-05

砷化镓光电阴极光谱响应与吸收率关系分析

  • 1. 南京工程学院通信工程学院, 南京 211167;
  • 2. 南京工程学院自动化学院, 南京 211167
  • 通信作者: 赵静, zhaojing7319@njit.edu.cn
    基金项目: 国家自然科学基金(批准号:61701220,61704075,61771245)、江苏省高等学校自然科学研究项目(批准号:17KJB510023)和南京工程学院基础研究专项基金(批准号:JCYJ201614)资助的课题.

摘要: 为了研究砷化镓(GaAs)光电阴极光谱响应与吸收率曲线间的关系,采用分子束外延法(MBE)和金属有机化合物化学气相沉积法(MOCVD)制备了两类GaAs光电阴极,并测试得到了样品吸收率和光谱响应实验曲线.对每个样品的这两条曲线在同一坐标系中做最大值归一化处理,将归一的光谱响应曲线与归一的吸收率曲线做除法,得到了类似光电阴极表面势垒的形状.结果表明,两种方法制备的光电阴极光谱响应曲线相比吸收率曲线都发生了红移,MBE样品偏移量稍大于MOCVD样品.短波吸收率不截止,光谱响应截止于500 nm左右;可见光波段上,光谱响应曲线的峰值位置相比吸收率曲线红移了几百meV;近红外区域,光谱响应曲线的截止位置相比吸收率曲线红移了几个meV.MOCVD样品中杂质对带隙的影响更小,光谱响应相比吸收率发生的能量偏移更小.这些结论对提高GaAs光电阴极光电发射性能有指导意义.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回