搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子自旋辅助实现光子偏振态的量子纠缠浓缩

赵瑞通 梁瑞生 王发强

引用本文:
Citation:

电子自旋辅助实现光子偏振态的量子纠缠浓缩

赵瑞通, 梁瑞生, 王发强

Quantum entanglement concentration for photonic polarization state assisted by electron spin

Zhao Rui-Tong, Liang Rui-Sheng, Wang Fa-Qiang
PDF
导出引用
  • 量子纠缠浓缩可以将非最大的纠缠态转变为最大纠缠态,提高量子通信的安全性.本文基于圆偏振光和量子点-腔系统的相互作用,用一个单光子作为连接远距离纠缠光子对的桥梁,在理想条件下实现了光子偏振纠缠态的浓缩.计算结果显示,这个纠缠浓缩方案在考虑耦合强度和腔泄漏的情况下也可以保持较高的保真度,而且不需要知道部分纠缠态的初始信息,也不必重复执行纠缠浓缩过程.这不仅提高了量子纠缠浓缩的安全性,也有助于通过消耗最少的量子资源来实现高效的量子信息处理.
    In order to assure the security of the long-distance quantum communication, the maximum entangled state is necessary. However, the decoherence of the entanglement is inevitable because of the channel noise and the interference of the environment. Quantum entanglement concentration can be used to convert a non-maximum entangled state into a maximum one. In previous entanglement concentration proposals, we need the initial coefficients of non-maximum entangled state or repeat the entanglement concentration process to improve the possibility of success, which reduces the efficiency of the entanglement concentration. A more efficient entanglement concentration for phontonic polarization state is proposed in this paper, which is based on the interaction between circularly polarized light and quantum dot-cavity system. An auxiliary photon is introduced to connect two distant participants. To overcome the channel noise, the auxiliary photon transmits though two channels between the two participants. The photons interact with coupled quantum dot-cavity before and after the auxiliary photon transmission. Then the states of spins and auxiliary photon are measured, and the maximum phontonic polarization entangled state is obtained by single-photon operations according to the measurement results. The success possibility of the proposed scheme is 1 in ideal conditions, that is, the concentration can be realized deterministically. However, the cavity leakage is unavoidable, so the fidelity of the entanglement concentration is calculated by taking one of the measurement results for example. The results show that the influences of the initial coefficients of non-maximum entangled state on the fidelity can be ignored in most cases, which saves a mass of photons used to measure the initial coefficients of the non-maximum entangled state. The fidelities with varying coupling strengths and cavity leakages are also shown in the paper. In the case of weak coupling, the fidelity is low and varies sharply with cavity leakage. Fortunately, the fidelity will plateau in a strong coupling case, and reaches 99.8% with a coupling strength 0.7 for diverse cavity leakages. Much progress has been made in the study of the strong coupling between quantum dot and optical cavity, which can satisfy the requirement of our entanglement concentration. So the proposed scheme is feasible in the current experimental conditions. In general, our proposal still maintains high fidelity even considering the cavity leakage, and the initial information about partially entangled state and the repetition of the entanglement concentration process are not required. This not only improves the security of the quantum entanglement concentration, but also contributes to efficient quantum information processing with less quantum resources. These characteristics increase the universality and efficiency of the entanglement concentration, thus assuring the quality of the long-distance quantum entanglement.
      通信作者: 梁瑞生, liangrs@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275059,61307062)资助的课题.
      Corresponding author: Liang Rui-Sheng, liangrs@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275059, 61307062).
    [1]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [2]

    Guo R, Zhou L, Gu S P, Wang X F, Sheng Y B 2016 Chin. Phys. B 25 030302

    [3]

    Zhang W Z, Li W D, Shi P, Gu Y J 2011 Acta Phys. Sin. 60 060303 (in Chinese) [张闻钊, 李文东, 史鹏, 顾永建 2011 物理学报 60 060303]

    [4]

    Zhou L, Wang D D, Wang X F, Gu S F, Sheng Y B 2017 Chin. Phys. B 26 020302

    [5]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [6]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [7]

    Bose S, Vedral V, Knight P L 1999 Phys. Rev. A 60 194

    [8]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [9]

    Sheng Y B, Zhou L, Zhao S M, Zheng B Y 2012 Phys. Rev. A 85 012307

    [10]

    Ding S P, Zhou L, Gu S P, Wang X F, Sheng Y B 2017 Int. J. Theor. Phys. 56 1912

    [11]

    Qu C C, Zhou L, Sheng Y B 2015 Quant. Inf. Process. 14 4131

    [12]

    Fei S M 2016 Sci. China: Inform. Sci. 59 128501

    [13]

    Song T T, Tan X, Wang T 2017 Sci. Rep. 7 1982

    [14]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [15]

    Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016 Ann. Phys. 369 128

    [16]

    Du F F, Deng F G, Long G L 2016 Sci. Rep. 6 35922

    [17]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [18]

    Wei H R, Deng F G 2013 Opt. Express 21 17671

    [19]

    Chen Q C 2016 Acta Phys. Sin. 65 247801 (in Chinese) [陈秋成 2016 物理学报 65 247801]

    [20]

    Wang S X, Li Y X, Wang N, Liu J J 2016 Acta Phys. Sin. 65 137302 (in Chinese) [王素新, 李玉现, 王宁, 刘建军 2016 物理学报 65 137302]

    [21]

    Wei H R, Deng F G 2013 Phys. Rev. A 87 022305

    [22]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026

    [23]

    Ren B C, Deng F G 2014 Sci. Rep. 4 4623

    [24]

    Shimizu H, Saravanan S, Yoshida J, Ibe S, Yokouchi N 2006 Appl. Phys. Lett. 88 241117

    [25]

    Ulbrich N, Bauer J, Scarpa G, Boy R, Schuh G, Abstreiter G, Schmult S, Wegscheider W 2003 Appl. Phys. Lett. 83 1530

    [26]

    Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307

    [27]

    Wang C 2012 Phys. Rev. A 86 012323

    [28]

    Sheng Y B, Zhou L, Wang L, Zhao S M 2013 Quant. Inf. Process. 12 1885

    [29]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [30]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [31]

    Hu C Y, Munro W J, O'Brien J L, Rarity J G 2009 Phys. Rev. B 80 205326

    [32]

    Bonato C, Haupt F, Oemrawsingh S S R, Gudat J, Ding D, van Exter M P, Bouwmeester D 2010 Phys. Rev. Lett. 104 160503

    [33]

    Reithmaier J P, Seȩk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakocskii V D, Reinecke T K, Forchel A 2004 Nature 432 197

    [34]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [35]

    Reitzenstein S, Hofmann C, Gorbunov A, Strauß M, Kwon S H, Schneider C, Löffler A, Höfling S, Kamp M, Forchel A 2007 Appl. Phys. Lett. 90 251109

  • [1]

    Bennett C H, Bernstein H J, Popescu S, Schumacher B 1996 Phys. Rev. A 53 2046

    [2]

    Guo R, Zhou L, Gu S P, Wang X F, Sheng Y B 2016 Chin. Phys. B 25 030302

    [3]

    Zhang W Z, Li W D, Shi P, Gu Y J 2011 Acta Phys. Sin. 60 060303 (in Chinese) [张闻钊, 李文东, 史鹏, 顾永建 2011 物理学报 60 060303]

    [4]

    Zhou L, Wang D D, Wang X F, Gu S F, Sheng Y B 2017 Chin. Phys. B 26 020302

    [5]

    Zhao Z, Pan J W, Zhan M S 2001 Phys. Rev. A 64 014301

    [6]

    Yamamoto T, Koashi M, Imoto N 2001 Phys. Rev. A 64 012304

    [7]

    Bose S, Vedral V, Knight P L 1999 Phys. Rev. A 60 194

    [8]

    Sheng Y B, Deng F G, Zhou H Y 2008 Phys. Rev. A 77 062325

    [9]

    Sheng Y B, Zhou L, Zhao S M, Zheng B Y 2012 Phys. Rev. A 85 012307

    [10]

    Ding S P, Zhou L, Gu S P, Wang X F, Sheng Y B 2017 Int. J. Theor. Phys. 56 1912

    [11]

    Qu C C, Zhou L, Sheng Y B 2015 Quant. Inf. Process. 14 4131

    [12]

    Fei S M 2016 Sci. China: Inform. Sci. 59 128501

    [13]

    Song T T, Tan X, Wang T 2017 Sci. Rep. 7 1982

    [14]

    Ren B C, Du F F, Deng F G 2013 Phys. Rev. A 88 012302

    [15]

    Cao C, Wang T J, Mi S C, Zhang R, Wang C 2016 Ann. Phys. 369 128

    [16]

    Du F F, Deng F G, Long G L 2016 Sci. Rep. 6 35922

    [17]

    Loss D, DiVincenzo D P 1998 Phys. Rev. A 57 120

    [18]

    Wei H R, Deng F G 2013 Opt. Express 21 17671

    [19]

    Chen Q C 2016 Acta Phys. Sin. 65 247801 (in Chinese) [陈秋成 2016 物理学报 65 247801]

    [20]

    Wang S X, Li Y X, Wang N, Liu J J 2016 Acta Phys. Sin. 65 137302 (in Chinese) [王素新, 李玉现, 王宁, 刘建军 2016 物理学报 65 137302]

    [21]

    Wei H R, Deng F G 2013 Phys. Rev. A 87 022305

    [22]

    Senellart P, Solomon G, White A 2017 Nat. Nanotechnol. 12 1026

    [23]

    Ren B C, Deng F G 2014 Sci. Rep. 4 4623

    [24]

    Shimizu H, Saravanan S, Yoshida J, Ibe S, Yokouchi N 2006 Appl. Phys. Lett. 88 241117

    [25]

    Ulbrich N, Bauer J, Scarpa G, Boy R, Schuh G, Abstreiter G, Schmult S, Wegscheider W 2003 Appl. Phys. Lett. 83 1530

    [26]

    Wang C, Zhang Y, Jin G S 2011 Phys. Rev. A 84 032307

    [27]

    Wang C 2012 Phys. Rev. A 86 012323

    [28]

    Sheng Y B, Zhou L, Wang L, Zhao S M 2013 Quant. Inf. Process. 12 1885

    [29]

    Ren B C, Long G L 2014 Opt. Express 22 6547

    [30]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)

    [31]

    Hu C Y, Munro W J, O'Brien J L, Rarity J G 2009 Phys. Rev. B 80 205326

    [32]

    Bonato C, Haupt F, Oemrawsingh S S R, Gudat J, Ding D, van Exter M P, Bouwmeester D 2010 Phys. Rev. Lett. 104 160503

    [33]

    Reithmaier J P, Seȩk G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakocskii V D, Reinecke T K, Forchel A 2004 Nature 432 197

    [34]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [35]

    Reitzenstein S, Hofmann C, Gorbunov A, Strauß M, Kwon S H, Schneider C, Löffler A, Höfling S, Kamp M, Forchel A 2007 Appl. Phys. Lett. 90 251109

  • [1] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [2] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感. 物理学报, 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [3] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [5] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [7] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [8] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [9] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [10] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [11] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [12] 王宝瑞, 孙 征, 徐仲英, 孙宝权, 姬 扬, Z. M. Wang, G. J. Salamo. InGaAs/GaAs量子链的光学特性研究. 物理学报, 2008, 57(3): 1908-1912. doi: 10.7498/aps.57.1908
    [13] 王子武, 肖景林. 抛物线性限制势量子点量子比特及其光学声子效应. 物理学报, 2007, 56(2): 678-682. doi: 10.7498/aps.56.678
    [14] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [15] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [16] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [17] 王防震, 陈张海, 柳 毅, 黄少华, 柏利慧, 沈学础. CdSe/ZnSe超薄层中两类量子岛(点)之间的激子转移和它们的光学性质研究. 物理学报, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [18] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [19] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [20] 汤乃云, 季亚林, 陈效双, 陆 卫. 离子注入对InAs/GaAs量子点光学效质的影响. 物理学报, 2005, 54(6): 2904-2909. doi: 10.7498/aps.54.2904
计量
  • 文章访问数:  3856
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-04
  • 修回日期:  2017-08-20
  • 刊出日期:  2017-12-05

电子自旋辅助实现光子偏振态的量子纠缠浓缩

  • 1. 华南师范大学信息光电子科技学院, 广东省微纳光子功能材料与器件重点实验室, 广州 510006
  • 通信作者: 梁瑞生, liangrs@scnu.edu.cn
    基金项目: 国家自然科学基金(批准号:61275059,61307062)资助的课题.

摘要: 量子纠缠浓缩可以将非最大的纠缠态转变为最大纠缠态,提高量子通信的安全性.本文基于圆偏振光和量子点-腔系统的相互作用,用一个单光子作为连接远距离纠缠光子对的桥梁,在理想条件下实现了光子偏振纠缠态的浓缩.计算结果显示,这个纠缠浓缩方案在考虑耦合强度和腔泄漏的情况下也可以保持较高的保真度,而且不需要知道部分纠缠态的初始信息,也不必重复执行纠缠浓缩过程.这不仅提高了量子纠缠浓缩的安全性,也有助于通过消耗最少的量子资源来实现高效的量子信息处理.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回