搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌掺钡的电子结构及其铁电性能研究

徐佳楠 陈焕铭 潘凤春 林雪玲 马治 陈治鹏

引用本文:
Citation:

氧化锌掺钡的电子结构及其铁电性能研究

徐佳楠, 陈焕铭, 潘凤春, 林雪玲, 马治, 陈治鹏

Electronic structures and ferroelectric properties of Ba-doped ZnO

Xu Jia-Nan, Chen Huan-Ming, Pan Feng-Chun, Lin Xue-Ling, Ma Zhi, Chen Zhi-Peng
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理方法计算了不同原子百分比含量的Ba掺杂ZnO半导体体材料超晶胞的能带结构、电子态密度、极化率和相对介电值.计算结果表明:Ba掺杂的ZnO体系为直接带隙半导体材料,其禁带宽度随着Ba原子掺杂百分比的增加呈现出逐渐增大的趋势.体系铁电性能的计算表明:与纯ZnO相比,ZnO掺入Ba原子后的极化率与相对介电值发生了较为明显的变化,其极化率随着Ba原子掺杂百分比的增加而增大,相对介电值随着Ba原子掺杂百分比的增加而减小.对角化后的极化率分量的数值结果表明:在电场作用下超胞中可能存在微畴结构,并且由于畴间电偶极矩的强相互作用,使得超胞宏观上表现为几乎具有各向同性的极化率特征.
    Wurtzite ZnO has long been considered to be a promising candidate material for photovoltaic application due to its high power conversion efficiency. More interestingly and very recently, some research results suggested that the ferroelectric property of the photovoltaic material introduced by chemical elements doping can promote its power conversion efficiency significantly. Therefore, in order to understand the effect of Ba doping on the electronic structure and the ferroelectric properties of ZnO and to reveal the potentially optoelectronic properties of Zn1-xBaxO, the energy band structure, the density of states, and the polarizability and the relative dielectric constant of the bulk Ba-doped ZnO supercell system, in which the Zn atoms are partly and uniformly substituted by the Ba atoms, are investigated by using the first-principles method based on the density functional theory and other physical theory. The norm-conserving pseudopotentials and the plane-wave basis set with a cut-off energy of 600 eV are used in the calculation. The generalized gradient approximation refined by Perdew and Zunger (GGA-PBE), the local density approximation (LDA) and the local density approximation added Hubbard energy (LDA+U) are employed for determining the exchange-correlation energy respectively. Brillouin zone is set to be within 4×4×5K point mesh generated by the Monkhorst-Pack scheme. The self-consistent convergence of total energy is at 2.0×10-6 eV/atom. Additionally, in order to obtain a stable and accurate calculation result, the cell structure is optimized prior to calculation. The calculated results suggest that the bulk Ba-doped ZnO semiconductor system is still a semiconductor with a direct wide band gap. The band gap of Zn1-xBaxO increases gradually with Ba atom doping percentage increasing from 12.5% to 87.5%. Consequently, the ferroelectric polarization properties and the dielectric properties of the bulk Ba-doped wurtzite ZnO materials are tailored by doping Ba atoms. It indicates that the polarizability of Zn1-xBaxO system increases with Ba doping atomic percentage increasing, especially, the polarizability reaches to a maximum when the atomic percentage of doping is 75%. Meanwhile, the relative dielectric constant inversely decreases with Ba atomic percentage increasing. This is attributed to the effective contribution of Ba atoms to the density of state at the bottom of the valence band. The diagonalized components of polarizability imply that there are possible micro-domains in the supercell while applying externally electric field to it. And the supercell presents a nearly isotropic polarizability macroscopically due to the strong interaction among the electric dipole moments existing in the different domains.
      通信作者: 陈焕铭, bschm@163.com
    • 基金项目: 西部一流大学重大创新项目(批准号:ZKZD2017006)资助的课题.
      Corresponding author: Chen Huan-Ming, bschm@163.com
    • Funds: Project supported by the Major Innovation Projects for Building First-class Universities in China's Western Region (Grant No. ZKZD2017006).
    [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 物理学报 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475

    [2]

    Bagnall D M, Chen Y F, Zhu Z, Yao T, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230

    [3]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [4]

    Shen W F, Zhao Y, Zhang C B 2005 Thin Solid Films 483 382

    [5]

    Yamamoto N, Makino H, Osone S, Ujihara A, Ito T, Hokari T, Maruyama T, Yamamoto T 2012 Thin Solid Films 520 4131

    [6]

    Hu Q C, Ding K 2017 Chin. Phys. B 26 068104

    [7]

    Que M L, Wang X D, Peng Y Y, Pan C F 2017 Chin. Phys. B 26 067301

    [8]

    Lu Y J, Shi Z F, Shan C X, Shen D Z 2017 Chin. Phys. B 26 047703

    [9]

    Gao H X, Hu R, Yang Y T 2012 Chin. Phy. Lett. 29 017305

    [10]

    Chen R Q, Zou C W, Bian J M, Adarsh S, Gao W 2011 Nanotechnology 22 105706

    [11]

    Lin Y H, Ying M, Li M, Wang X, Nan C W 2007 Appl. Phys. Lett. 22 197203

    [12]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [13]

    Joseph M, Tabata H, Kawai T 1999 Appl. Phys. Lett. 74 1617

    [14]

    Onodera A, Tamaki A, Kawamura Y, Sawada T, Yamashita1 H 1996 J. Appl. Phys. 35 5160

    [15]

    Dhananjay, Nagaraju J, Krupanidhi S B 2006 J. Appl. Phys. 99 034105

    [16]

    Yang Y C, Song C, Wang X H, Zeng F, Pan F, Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2008 Appl. Phys. Lett. 92 10715

    [17]

    Dang H L, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 2838 (in Chinese)[党宏丽, 王崇愚, 于涛 2007 物理学报 56 2838]

    [18]

    Chen Z P, Ma Y N, Lin X L, Pan F C, Xi L Y, Ma Z, Zheng F, Wang Y Q, Chen H M 2017 Acta Phys. Sin. 66 196101 (in Chinese)[陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭 2017 物理学报 66 196101]

    [19]

    Chang Y T, Sun Q L, Long Y, Wang M W 2014 Chin. Phys. Lett. 31 127501

    [20]

    Xu N N, Li G P, Lin Q L, Liu H, Bao L M 2016 Chin. Phys. B 25 116103

    [21]

    Wang Y P, Wang Y P, Shi L B 2015 Chin. Phys. Lett. 32 016102

    [22]

    Guan L, Tan F X, Jia G Q, Shen G M, Liu B T, Li X 2016 Chin. Phys. Lett. 33 087501

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文明, 李旭升 2016 物理学报 65 077101]

    [24]

    Gopal P, Spaldin N A 2006 J. Electron. Mater. 35 538

    [25]

    Wang X H, Zhang J, Zhu Z, Zhu J Z 2006 Colloids Surf. A 276 59

    [26]

    Zhao J, Yang X Q, Yang Y, Huang Y H, Zhang Y 2010 Mater. Lett. 64 569

    [27]

    He X H, Yang H, Chen Z W, Liao S S Y 2012 Physica B 407 2895

    [28]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J 1992 Phys. Rev. B 46 6671

    [29]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 86 75

    [32]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [33]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [34]

    Delley B 2000 J. Chem. Phys. 113 7756

    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Desgreniers S 1998 Phys. Rev. B 58 14102

    [37]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refeson K 2005 Z. Kristallogr. B 220 567

    [38]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [39]

    Wimmer E, Krakauer H, Weinert M, Freeman A 2006 Phys. Rev. B 24 864

    [40]

    Wu Y X, Zhang H, Han L 1996 J. Atom. Mole. Phys. 28 749

    [41]

    Osunch K, Lombardi E B, Gebiki W 2006 Phys. Rev. 73 075202

    [42]

    Srinet G, Kumar R, Sajal V 2014 Mater Lett 126 274

    [43]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [44]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [45]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

  • [1] 陆杨丹, 吕建国, 杨汝琪, 陆波静, 朱丽萍, 叶志镇. 透明导电ZnO:Al/Cu网格复合膜及其电加热性能. 物理学报, 2022, 71(18): 187304. doi: 10.7498/aps.71.20220529
    [2] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [3] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [6] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [7] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [8] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [9] 姚光锐, 范广涵, 郑树文, 马佳洪, 陈峻, 章勇, 李述体, 宿世臣, 张涛. 第一性原理研究Te-N共掺p型ZnO. 物理学报, 2012, 61(17): 176105. doi: 10.7498/aps.61.176105
    [10] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [11] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [13] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [14] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究. 物理学报, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [17] 李 晖, 谢二庆, 张洪亮, 潘孝军, 张永哲. 火焰喷雾法合成ZnO和MgxZn1-xO纳米颗粒的光学性能研究. 物理学报, 2007, 56(6): 3584-3588. doi: 10.7498/aps.56.3584
    [18] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [20] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
计量
  • 文章访问数:  3656
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 修回日期:  2018-03-27
  • 刊出日期:  2019-05-20

氧化锌掺钡的电子结构及其铁电性能研究

  • 1. 宁夏大学 物理与电子电气工程学院, 银川 750021
  • 通信作者: 陈焕铭, bschm@163.com
    基金项目: 西部一流大学重大创新项目(批准号:ZKZD2017006)资助的课题.

摘要: 运用基于密度泛函理论的第一性原理方法计算了不同原子百分比含量的Ba掺杂ZnO半导体体材料超晶胞的能带结构、电子态密度、极化率和相对介电值.计算结果表明:Ba掺杂的ZnO体系为直接带隙半导体材料,其禁带宽度随着Ba原子掺杂百分比的增加呈现出逐渐增大的趋势.体系铁电性能的计算表明:与纯ZnO相比,ZnO掺入Ba原子后的极化率与相对介电值发生了较为明显的变化,其极化率随着Ba原子掺杂百分比的增加而增大,相对介电值随着Ba原子掺杂百分比的增加而减小.对角化后的极化率分量的数值结果表明:在电场作用下超胞中可能存在微畴结构,并且由于畴间电偶极矩的强相互作用,使得超胞宏观上表现为几乎具有各向同性的极化率特征.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回