搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁电耦合效应的基本电路元件和非易失性存储器

申见昕 尚大山 孙阳

引用本文:
Citation:

基于磁电耦合效应的基本电路元件和非易失性存储器

申见昕, 尚大山, 孙阳

Fundamental circuit element and nonvolatile memory based on magnetoelectric effect

Shen Jian-Xin, Shang Da-Shan, Sun Young
PDF
导出引用
  • 磁电耦合效应是指磁场控制电极化或者电场控制磁性的物理现象,它们为开发新型电子器件提供了额外的物理状态自由度,具有巨大的应用潜力.磁电耦合系数作为磁电耦合材料的重要参量,体现了材料磁化和电极化的耦合性能,其随外加物理场的变化可以表现出非线性回滞行为,具备作为非易失存储的物理状态特征.本文讨论了基于磁电耦合效应如何建立起电荷-磁通之间的直接关联,继而实现了第四种基本电路元件并构建了完整的电路元件关系图.在此基础上,研究了多铁性异质结中的非线性磁电耦合效应,并利用其独特的电荷-磁通关联特性,开发了基于磁电耦合系数的电写-磁读型非易失性信息存储、逻辑计算与类神经突触记忆等一系列新型信息功能器件.
    The magnetoelectric coupling effect in materials provides an additional degree of freedom of physical states for information storage and shows great potential in developing a new generation of memory devices. We use an alternative concept of nonvolatile memory based on a type of nonlinear magnetoelectric effects showing a butterfly-shaped hysteresis loop. The state of magnetoelectric coefficient, instead of magnetization, electric polarization, or resistance, is utilized to store information. Because this memory concept depends on the relationship between the charge and magnetic flux, it is actually the fourth fundamental circuit memory element in addition to memristor, memcapacitor, and meminductor, and is defined as memtranstor. Our experiments in memtranstor comprised of the[Pb(Mg1/3Nb2/3)]0.7[PbTiO3]0.3(PMN-PT)/Terfenol-D and Ni/PMN-PT/Ni multiferroic heterostructures clearly demonstrated that the magnetoelectric coefficient can be repeatedly switched not only between positive and negative polarities but also between multilevel states by applying electric fields, confirming the feasibility of this principle. In addition to nonvolatile memory, the nonvolatile logic functions, such as NOR and NAND and synaptic plasticity functions, such as long-term potentiation/depression and spiking-time-dependent plasticity are implemented in a single memtranstor by engineering the applied electric-field pulses. The combined functionalities of memory, logic, and synaptic plasticity enable the memtranstor to serve as a promising candidate for future computing systems beyond von Neumann architecture.
      通信作者: 尚大山, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn ; 孙阳, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11534015,51671213,51725104)、国家重点研发计划(批准号:2016YFA0300701)和中国科学院战略性先导科技专项(B类)(批准号:XDB07030200)资助的课题.
      Corresponding author: Shang Da-Shan, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn ; Sun Young, shangdashan@iphy.ac.cn;youngsun@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11534015, 51671213, 51725104), the National Key RD Program of China (Grant No. 2016YFA0300701), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030200).
    [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • [1]

    Scott J F 2000 Ferroelectric Memories (Berlin: Springer-Verlag) pp23-51

    [2]

    Chappert C, Fert A, van Dau F N 2007 Nat. Mater. 6 813

    [3]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [4]

    Waser R, Dittmann R, Staikov G, Szot K 2007 Nat. Mater. 6 833

    [5]

    Dong S, Liu J M, Cheong S W, Ren Z 2015 Adv. Phys. 64 519

    [6]

    Scott J F 2007 Nat. Mater. 6 256

    [7]

    Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthlmy A, Fert A 2007 Nat. Mater. 6 296

    [8]

    Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, Barthlmy A 2010 Science 327 1106

    [9]

    Pantel D, Goetze S, Hesse D, Alexe M 2012 Nat. Mater. 11 289

    [10]

    Bibes M, Barthlmy A 2008 Nat. Mater. 7 425

    [11]

    Song C, Cui B, Li F, Zhou X J, Pan F 2017 Prog. Mater. Sci. 87 33

    [12]

    Thiele C, Dorr K, Bilani O, Rdel J, Schultz L 2007 Phys. Rev. B 75 054408

    [13]

    Ma J, Lin Y, Nan C W 2010 J. Phys. D:Appl. Phys. 43 012001

    [14]

    Chen Y, Gao J, Fitchorov T, Cai Z, Ziemer K S, Vittoria C, Harris V G 2009 Appl. Phys. Lett. 94 082504

    [15]

    Xuan H C, Wang L Y, Zheng Y X, Li Y L, Cao Q Q, Chen S Y, Wang D H, Huang Z G, Du Y W 2011 Appl. Phys. Lett. 99 032509

    [16]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [17]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [18]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [19]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [20]

    Vongehr S 2012 Adv. Sci. Lett. 17 285

    [21]

    Mathur N D 2008 Nature 455 E13

    [22]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 068402

    [23]

    Lou J, Pellegrini G N, Liu M, Mathur N D, Sun N X 2012 Appl. Phys. Lett. 100 102907

    [24]

    Fiebig M 2005 J. Phys. D 38 R123

    [25]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [26]

    Nan C W, Bichurin M I, Peterburgskaya B S, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [27]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [28]

    Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804

    [29]

    Lee D, Yang M S, Kim T H, Jeon B C, Kim Y S, Yoon J G, Lee H N, Baek S H, Eom C B, Noh T W 2012 Adv. Mater. 24 402

    [30]

    Shen J X, Cong J Z, Shang D S, Chai Y S, Shen S P, Zhai K, Sun Y 2016 Sci. Rep. 6 34473

    [31]

    Lu P P, Shang D S, Shen J X, Chai Y S, Yang C S, Zhai K, Cong J Z, Shen S P, Sun Y 2016 Appl. Phys. Lett. 109 252902

    [32]

    Zhai K, Shang D S, Chai Y S, Li G, Cai J W, Shen B G, Sun Y 2018 Adv. Func. Mater. 28 1705771

    [33]

    Wang J, Meng H, Wang J P 2005 J. Appl. Phys. 97 10D509

    [34]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062

    [35]

    Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R, Williams R S 2010 Nature 464 873

    [36]

    Wang Z, Zhao W, Kang W, Zhang Y, Klein J O, Ravelosona D, Zhang Y, Chappert C 2014 IEEE Trans. Magn. 50 9100604

    [37]

    Li Y, Zhong Y P, Deng Y F, Zhou Y X, Xu L, Miao X S 2013 J. Appl. Phys. 114 234503

    [38]

    Linn E, Rosezin R, Tappertzhofen S, Bttger U, Waser R 2012 Nanotechnology 23 305205

    [39]

    Siemon A, Breuer T, Aslam N, Ferch S, Kim W, van den Hurk J, Rana V, Hoffmann-Eifert S, Waser R, Menzel S, Linn E 2015 Adv. Funct. Mater. 25 6414

    [40]

    Shen J X, Shang D S, Chai Y S, Wang Y, Cong J Z, Shen S P, Yan L Q, Wang W H, Sun Y 2016 Phys. Rev. Appl. 6 064028

    [41]

    Zhou Y, Yang S C, Apo D J, Maurya D, Priya S 2012 Appl. Phys. Lett. 101 232905

    [42]

    Cassinerio M, Ciocchini N, Ielmini D 2013 Adv. Mater. 25 5975

    [43]

    Binek C, Doudin B 2005 J. Phys. Condens. Matter. 17 L39

    [44]

    Chen X, Hochstrat A, Borisov P, Kleemann W 2006 Appl. Phys. Lett. 89 202508

    [45]

    Hu J M, Li Z, Lin Y H, Nan C W 2010 Phys. Status Solidi RRL 4 106

    [46]

    Bi G Q, Poo M M 1998 J. Neurosci. 18 10464

    [47]

    Mead C 1990 Proc. IEEE 78 1629

    [48]

    Indiveri G, Chicca E, Douglas R A 2006 IEEE Trans. Neural Netw. 17 211

    [49]

    Yang J J, Strukov D B, Stewart D 2013 Nat. Nanotechnol. 8 13

    [50]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297

    [51]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [52]

    Kuzum D, Yu S, Wong H S P 2013 Nanotechnology 24 382001

    [53]

    Shen J X, Shang D S, Chai Y S, Wang S G, Shen B G, Sun Y 2018 Adv. Mater. 30 1706717

  • [1] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [2] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数. 物理学报, 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [3] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [4] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [5] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [6] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [7] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [8] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [9] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [10] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, 2013, 62(4): 047501. doi: 10.7498/aps.62.047501
    [11] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [12] 何元, 邓涛, 吴正茂, 刘元元, 夏光琼. 非对称电流偏置下互耦半导体激光器的混沌同步特性研究. 物理学报, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [13] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [14] 唐明春, 肖绍球, 高山山, 官剑, 王秉中. 新型电谐振人工异向介质抑制阵列天线单元间互耦. 物理学报, 2010, 59(3): 1851-1856. doi: 10.7498/aps.59.1851
    [15] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [16] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [17] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, 2008, 57(12): 7872-7877. doi: 10.7498/aps.57.7872
    [18] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [19] 任浩, 顾德炜, 潘正权, 应和平. 自对耦无序分布随机链Potts模型的临界普适性研究. 物理学报, 2004, 53(1): 265-271. doi: 10.7498/aps.53.265
    [20] 吴志元. 对Cohn直耦滤波器理论的推广. 物理学报, 1977, 26(3): 215-224. doi: 10.7498/aps.26.215
计量
  • 文章访问数:  3646
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-04-26
  • 刊出日期:  2019-06-20

基于磁电耦合效应的基本电路元件和非易失性存储器

    基金项目: 国家自然科学基金(批准号:11534015,51671213,51725104)、国家重点研发计划(批准号:2016YFA0300701)和中国科学院战略性先导科技专项(B类)(批准号:XDB07030200)资助的课题.

摘要: 磁电耦合效应是指磁场控制电极化或者电场控制磁性的物理现象,它们为开发新型电子器件提供了额外的物理状态自由度,具有巨大的应用潜力.磁电耦合系数作为磁电耦合材料的重要参量,体现了材料磁化和电极化的耦合性能,其随外加物理场的变化可以表现出非线性回滞行为,具备作为非易失存储的物理状态特征.本文讨论了基于磁电耦合效应如何建立起电荷-磁通之间的直接关联,继而实现了第四种基本电路元件并构建了完整的电路元件关系图.在此基础上,研究了多铁性异质结中的非线性磁电耦合效应,并利用其独特的电荷-磁通关联特性,开发了基于磁电耦合系数的电写-磁读型非易失性信息存储、逻辑计算与类神经突触记忆等一系列新型信息功能器件.

English Abstract

参考文献 (53)

目录

    /

    返回文章
    返回