搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

李路远 阮莹 魏炳波

引用本文:
Citation:

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

李路远, 阮莹, 魏炳波

Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys

Li Lu-Yuan, Ruan Ying, Wei Bing-Bo
PDF
导出引用
  • 采用落管方法实现了液态三元Fe-Cr-Ni合金的深过冷与快速凝固,合金液滴的冷却速率和过冷度均随液滴直径的减小而迅速增大.两种成分合金近平衡凝固组织均为粗大板条状α相.在快速凝固过程中,不同直径Fe81.4Cr13.9Ni4.7合金液滴凝固组织均为板条状α相,其固态相变特征很明显,随着过冷度增大,初生δ相由具有发达主干的粗大枝晶转变为等轴晶.Fe81.4Cr4.7Ni13.9合金液滴凝固组织由α相晶粒组成,随着过冷度增大,初生γ相由具有发达主干的粗大枝晶转变为等轴晶,其枝晶主干长度和二次分枝间距均显著下降,晶粒内溶质的相对偏析度也明显减小,溶质Ni的相对偏析度始终大于溶质Cr.理论计算表明,与γ相相比,δ相枝晶生长速度更大.在实验获得的过冷度范围内,两种Fe-Cr-Ni合金枝晶生长过程均由热扩散控制.
    Stainless steels with excellent hardness and corrosion resistance performance have been widely used in industrial production. Ternary Fe-Cr-Ni alloys, as a model alloy of nickel chromium stainless steels, are of great importance in the fields of material science. Under non-equilibrium solidification condition, alloys may have new microstructure and improved performance. In this paper, two liquid ternary Fe-Cr-Ni alloys are deeply undercooled and rapidly solidified in a 3-m drop tube to investigate the microstructure evolution and solute distribution of alloy droplets with different sizes. In the drop tube experiments, the Fe-Cr-Ni alloy samples with a mass of 1.5 g are placed in a φ16 m mm×150 mm quartz tube with a 0.5-mm-diameter orifice at its bottom and heated by induction heating device in a high vacuum chamber. Then the samples are melted and overheated to 200 K above their liquidus temperatures for several seconds. The alloy melt is ejected out of the small orifice and dispersed into numerous droplets after adding high pressure helium gas flow. The alloy droplets with diameters ranging from 68 μm to 1124 μm are achieved. After experiments, the alloy droplets with different sizes are mounted respectively. Then they are polished and etched. The drop tube technique provides an efficient way to study the rapid solidification mechanism of alloys. Besides the experiments, the dendrite growth velocities of primary phase in two Fe-Cr-Ni alloys are calculated theoretically using the modified LKT/BCT model. As droplet size decreases, both cooling rate and undercooling increase exponentially and the morphologies of two alloys become well refined. Under the near-equilibrium solidification condition with a cooling rate of 10 K/min, both alloys consist of coarse lath-like α phase. After rapid solidification of Fe81.4Cr13.9Ni4.7 alloy droplets during free fall, the microstructure presents a lath-like α phase, resulting from the solid-solid phase transition. As undercooling increases, the primary δ phase is converted from the coarse dendrite with long trunk into equiaxed grain. For Fe81.4Cr4.7Ni13.9 alloy, the microstructure is composed of α phase grains. The transition of primary γ phase from coarse dendrite with long trunk to refined equiaxed grain occurs as the undercooling increases. Meanwhile, both dendrite trunk length and secondary dendrite arm spacing decrease drastically, suggesting that the rapid solidification is the main reason for grain refinement. Moreover, the relative segregation degree of solute Cr and Ni inside α phase grain also decreases obviously with the increase of undercooling, and the microsegregation of Ni is more remarkable than that of Cr. This suggests that the high cooling rate and undercooling cause the solute to be distributed evenly. Compared with that of γ phase, the dendrite growth velocity of δ phase is large and its dendrite tip radius is small. The two phase transform from solute diffusion controlled growth into thermal diffusion controlled growth as undercooling increases to 8 K. When undercooling is larger than 8 K and within the experimental undercooling range, the dendrite growth of both Fe-Cr-Ni alloys is controlled by thermal diffusion.
      通信作者: 阮莹, ruany@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1660108,51327901)、陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)和中央高校基本科研业务费(批准号:3102018jgc009)资助的课题.
      Corresponding author: Ruan Ying, ruany@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1660108, 51327901), the Research and Development Project of Shaanxi Industrial Science and Technology, China (Grant No. 2016GY-247), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102018jgc009).
    [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Llamazares J L S, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda L, Suñol J J, Varga R 2008 Appl. Phys. Lett. 92 012513

    [3]

    Chen Q J, Shen J, Fan H B, Sun J F, Huang Y J, Mccartney D G 2005 Chin. Phys. Lett. 22 1736

    [4]

    Lavernia E J, Srivatsan T S 2010 J. Mater. Sci. 45 287

    [5]

    Ruan Y, Mohajerani A, Dao M 2016 Sci. Rep. 6 31684

    [6]

    Quirinale D G, Rustan G E, Kreyssig A, Goldman A I 2015 Appl. Phys. Lett. 106 241906

    [7]

    Niyomsoan S, Gargarella P, Stoica M, Khoshkoo M S, Khn U, Eckert J 2013 J. Appl. Phys. 113 104308

    [8]

    Chan W L, Averback R S, Cahill D G, Ashkenazy Y 2009 Phys. Rev. Lett. 102 095701

    [9]

    Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson D S, Goldman A I, Kelton K F 2008 Phys. Rev. B 77 184102

    [10]

    Zhou J K, Li J G 2008 Appl. Phys. Lett. 92 141915

    [11]

    Santos J D, Sanchez T, Alvarez P, Sanchez M L, Llamazares J L S, Hernando B, Escoda L, Suñol J J, Varga R 2008 J. Appl. Phys. 103 07B326

    [12]

    Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917

    [13]

    Ruan Y 2013 Phys. Status Solidi B 250 73

    [14]

    Lu X Y, Liao S, Ruan Y, Dai F P 2012 Acta Phys. Sin. 61 216102 (in Chinese) [鲁晓宇, 廖霜, 阮莹, 代富平 2012 物理学报 61 216102]

    [15]

    Fransaer J, Wagner A V, Spaepen F 2000 J. Appl. Phys. 87 1801

    [16]

    Ruan Y, Wang X J 2015 Phys. Status Solidi B 252 361

    [17]

    Chen K P, L P, Wang H P 2017 Acta Phys. Sin. 66 068101 (in Chinese) [陈克萍, 吕鹏, 王海鹏 2017 物理学报 66 068101]

    [18]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desré P J 1998 Phys. Rev. B 57 3340

    [19]

    Wu Y H, Chang J, Wang W L, Wei B 2016 Appl. Phys. Lett. 109 154101

    [20]

    Hanlon A B, Matson D M, Hyers R W 2006 Phil. Mag. Lett. 86 165

    [21]

    Fu J W, Yang Y S, Guo J J, Tong W H 2008 Mater. Sci. Technol. 24 941

    [22]

    Fu J W, Yang Y S, Guo J J, Ma J C, Tong W H 2009 Mater. Sci. Technol. 25 1013

    [23]

    Fukumoto S, Okane T, Umeda T, Kurz W 2000 ISIJ Int. 40 677

    [24]

    Yang X Y, Peng X, Chen J, Wang F H 2007 Appl. Surf. Sci. 253 4420

    [25]

    Cronemberger M E R, Mariano N A, Coelho M F C, Pereira J N, Ramos é C T, Mendonça R D, Nakamatsu S, Maestrelli S C 2014 Mater. Sci. Forum 802 398

    [26]

    Effenberg G, Ilyenko S, Dovbenko O, MSIT 2008 Ternary Alloy Systems (Vol. 11) (Berlin: Springer-Verlag Berlin Heidelberg) pp218-249

    [27]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [28]

    Tkatch V I, Denisenko S N, Beloshov O N 1997 Acta Mater. 45 2821

    [29]

    Lee E S, Ahn S 1994 Acta Metall. Mater. 42 3231

    [30]

    Löser W, Herlach D M 1992 Metall. Trans. A 23 1585

    [31]

    Bobadilla M, Lacaze J, Lesoult G 1988 J. Cryst. Growth 89 531

    [32]

    Chuang Y Y, Hsieh K C, Chang Y A 1986 Metall. Trans. A 17 1373

    [33]

    Gale W F, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann publications) pp14-11

  • [1] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [4] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [5] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [6] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [7] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [8] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [9] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律. 物理学报, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [10] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [11] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [13] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [15] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [16] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [19] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  2979
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-07-20

液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律

  • 1. 西北工业大学应用物理系, 西安 710072
  • 通信作者: 阮莹, ruany@nwpu.edu.cn
    基金项目: 国家自然科学基金(批准号:U1660108,51327901)、陕西省科学技术研究发展计划工业科技攻关项目(批准号:2016GY-247)和中央高校基本科研业务费(批准号:3102018jgc009)资助的课题.

摘要: 采用落管方法实现了液态三元Fe-Cr-Ni合金的深过冷与快速凝固,合金液滴的冷却速率和过冷度均随液滴直径的减小而迅速增大.两种成分合金近平衡凝固组织均为粗大板条状α相.在快速凝固过程中,不同直径Fe81.4Cr13.9Ni4.7合金液滴凝固组织均为板条状α相,其固态相变特征很明显,随着过冷度增大,初生δ相由具有发达主干的粗大枝晶转变为等轴晶.Fe81.4Cr4.7Ni13.9合金液滴凝固组织由α相晶粒组成,随着过冷度增大,初生γ相由具有发达主干的粗大枝晶转变为等轴晶,其枝晶主干长度和二次分枝间距均显著下降,晶粒内溶质的相对偏析度也明显减小,溶质Ni的相对偏析度始终大于溶质Cr.理论计算表明,与γ相相比,δ相枝晶生长速度更大.在实验获得的过冷度范围内,两种Fe-Cr-Ni合金枝晶生长过程均由热扩散控制.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回