搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究

李晓云 孙博文 许正倩 陈静 尹亚玲 印建平

引用本文:
Citation:

基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究

李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平

Theoritical research on optical Stark deceleration and trapping of neutral molecular beams based on modulated optical lattices

Li Xiao-Yun, Sun Bo-Wen, Xu Zheng-Qian, Chen Jing, Yin Ya-Ling, Yin Jian-Ping
PDF
导出引用
  • 本文基于分子束光学Stark减速理论,提出采用调制的红失谐光晶格来减速和囚禁任意脉冲超声分子束方案,并予以理论研究.以CH4超声分子束为例,利用Monte-Carlo方法模拟了调制光晶格中的分子减速与囚禁的动力学过程,给出减速级数、同步分子初始位相角与减速效果的关系.研究结果表明:随着减速级数的增加,被减速的分子波包逐渐从原来的分子速度分布的大波包中分离开来,且减速级数越高,减速后的分子速度越小.在其他条件相同时同步分子初始位相角越大,减速波包内的分子数目越少,同时位相空间被压缩.与未调制的光晶格减速方案相比,本方案中无分子自由飞行过程,在相同的光晶格长度内完成了双倍的减速级数.当光晶格长度取3.71 mm时,模拟结果显示CH4分子从280 m/s减速至172 m/s,而未调制光晶格只能将CH4分子从280 m/s减速至232 m/s,减速效果提高了26%.本方案可以集分子的减速、囚禁于一体,是一种新型的分子光学功能器件,在冷分子光学、量子信息、冷化学等前沿研究领域中有潜在的应用.
    According to the optical Stark deceleration theory of using a stationary quasi-cw red-detuned optical lattice to slow and trap an arbitrary pulsed molecular beam, we propose a novel idea of using a modulated optical lattice instead of a stationary one to realize a multistage optical Stark deceleration. We analyze the motion of the decelerated molecules inside the optical decelerator, and study the dependence of the velocity of the decelerated molecular packet on the synchronous phase angle and the number of the deceleration stages (i.e. half the number of the optical-lattice cells) by using the Monte-Carlo method. The simulation results show that it takes longer time for the molecules to reach the detector as the number of the deceleration stages increases. The decelerated molecular wave packets are gradually separated from the large wave packets of the original molecular velocity distribution. And the higher the number of the deceleration stages, the lower the decelerated molecular speed is. In addition, we also study the influence of the initial phase angle of synchronous molecules under the same conditions. It is demonstrated that the higher the initial phase angle of synchronous molecules, the lower the decelerated molecular speed is and the smaller the number of molecules in the deceleration wave packet, so the phase space is compressed. The result also shows that the modulated optical Stark decelerator does not have the process of molecular free flight, and thus improving the efficiency of deceleration for molecules. The ultra-cold molecules can be trapped in the optical lattice by rapidly turning off the modulation signal of the lattice. Comparing with the previous scheme, the doubled number of the deceleration stages is reached in the same optical lattice length since a modulated optical lattice is used. For a length of optical lattice of 3.71 mm, theoretical simulation results demonstrate that the speed of methane molecules is decelerated from 280 m/s to 172 m/s. Comparing with the previous results from 280 m/s to 232 m/s, the deceleration effect is improved by 26%. Our scheme can not only obtain an ultra-colder molecular packet under the same molecular-beam parameters and deceleration conditions, but also be directly used to trap the slowed cold molecules after the deceleration without needing to use other techniques for molecular trapping.
      通信作者: 尹亚玲, ylyin@phy.ecnu.edu.cn
    • 基金项目: 上海市自然科学基金(批准号:17ZR1443000)资助的课题.
      Corresponding author: Yin Ya-Ling, ylyin@phy.ecnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanghai Municipality, China (Grant No. 17ZR1443000).
    [1]

    Jin D S,Ye J 2012 Chem. Rev. 112 4801

    [2]

    DeMille D, Doyle J M, Sushkov A O 2017 Science 357 990

    [3]

    Hummon M T, Tscherbul T V, Klos J, Lu H I, Tsikata E, Campbell W C, Dakgarno A, Doyle J M 2011 Phys. Rev. Lett. 106 053201

    [4]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [5]

    Bochinskiet J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [6]

    Quintero-Prez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [7]

    Shyur Y, Bossert J A, Lewandowski H J 2018 J. Phys. B 51 165101

    [8]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 物理学报 64 173701]

    [9]

    Motsch M, Jansen P, Agner J A, Schmutz H, Merkt F 2014 Phys. Rev. A 89 043420

    [10]

    Narevicius E, Parthey C G, Libson A, Riedel M F, Even U, Raizen M G 2007 New J. Phys. 9 96

    [11]

    Liu Y, Vashishta M, Djuricanin P, Zhou S D, Zhong W, Mittertreiner T, Carty D, Momose T 2017 Phys. Rev. Lett. 118 093201

    [12]

    Enomoto K, Momose T 2005 Phys. Rev. A 72 061403

    [13]

    Odashima H, Merz S, Enomoto K, Schnell M, Meijer G 2010 Phys. Rev. Lett. 104 253001

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nature Phys. 2 465

    [16]

    Ramirez-Serrano J, Strecker K E, Chandler D W 2006 Phys. Chem. Chem. Phys. 8 2985

    [17]

    Yin Y L, Zhou Q, Deng L Z, Xia Y, Yin J P 2009 Opt. Express 17 10706

    [18]

    Ji X, Zhou Q, Gu Z X, Yin J P 2012 Opt. Express 20 7792

    [19]

    Marx S, Adu Smith D, Insero G, Meek S A, Sartakov B G, Meijer G, Santambrogio G 2015 Phys. Rev. A 92 063408

    [20]

    Hou S Y, Wei B, Deng L Z, Yin J P 2016 Sci. Rep. 6 32663

    [21]

    Hou S Y, Wei B, Deng L Z, Yin J P 2017 Phys. Rev. A 96 063416

    [22]

    Haas D, Scherb S, Zhang D D, Willitsch S 2017 EPJ Techn. Instrum. 4 6

  • [1]

    Jin D S,Ye J 2012 Chem. Rev. 112 4801

    [2]

    DeMille D, Doyle J M, Sushkov A O 2017 Science 357 990

    [3]

    Hummon M T, Tscherbul T V, Klos J, Lu H I, Tsikata E, Campbell W C, Dakgarno A, Doyle J M 2011 Phys. Rev. Lett. 106 053201

    [4]

    Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558

    [5]

    Bochinskiet J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001

    [6]

    Quintero-Prez M, Jansen P, Wall T E, van den Berg J E, Hoekstra S, Bethlem H L 2013 Phys. Rev. Lett. 110 133003

    [7]

    Shyur Y, Bossert J A, Lewandowski H J 2018 J. Phys. B 51 165101

    [8]

    Liu J P, Hou S Y, Wei B, Yin J P 2015 Acta Phys. Sin. 64 173701 (in Chinese)[刘建平, 侯顺永, 魏斌, 印建平 2015 物理学报 64 173701]

    [9]

    Motsch M, Jansen P, Agner J A, Schmutz H, Merkt F 2014 Phys. Rev. A 89 043420

    [10]

    Narevicius E, Parthey C G, Libson A, Riedel M F, Even U, Raizen M G 2007 New J. Phys. 9 96

    [11]

    Liu Y, Vashishta M, Djuricanin P, Zhou S D, Zhong W, Mittertreiner T, Carty D, Momose T 2017 Phys. Rev. Lett. 118 093201

    [12]

    Enomoto K, Momose T 2005 Phys. Rev. A 72 061403

    [13]

    Odashima H, Merz S, Enomoto K, Schnell M, Meijer G 2010 Phys. Rev. Lett. 104 253001

    [14]

    Fulton R, Bishop A I, Barker P F 2004 Phys. Rev. Lett. 93 243004

    [15]

    Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nature Phys. 2 465

    [16]

    Ramirez-Serrano J, Strecker K E, Chandler D W 2006 Phys. Chem. Chem. Phys. 8 2985

    [17]

    Yin Y L, Zhou Q, Deng L Z, Xia Y, Yin J P 2009 Opt. Express 17 10706

    [18]

    Ji X, Zhou Q, Gu Z X, Yin J P 2012 Opt. Express 20 7792

    [19]

    Marx S, Adu Smith D, Insero G, Meek S A, Sartakov B G, Meijer G, Santambrogio G 2015 Phys. Rev. A 92 063408

    [20]

    Hou S Y, Wei B, Deng L Z, Yin J P 2016 Sci. Rep. 6 32663

    [21]

    Hou S Y, Wei B, Deng L Z, Yin J P 2017 Phys. Rev. A 96 063416

    [22]

    Haas D, Scherb S, Zhang D D, Willitsch S 2017 EPJ Techn. Instrum. 4 6

  • [1] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [2] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220304
    [3] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [4] 尹俊豪, 杨涛, 印建平. 基于\begin{document}${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$\end{document}跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [5] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [7] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [8] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [9] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [10] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱. 物理学报, 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [11] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [12] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究. 物理学报, 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [13] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [14] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [15] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [17] 张科智, 王建军, 刘国荣, 薛具奎. 两组分BECs在光晶格中的隧穿动力学及其周期调制效应. 物理学报, 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [18] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [19] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  3030
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-12
  • 修回日期:  2018-08-13
  • 刊出日期:  2019-10-20

基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究

  • 1. 华东师范大学物理与材料科学学院, 精密光谱科学与技术国家重点实验室, 上海 200241
  • 通信作者: 尹亚玲, ylyin@phy.ecnu.edu.cn
    基金项目: 上海市自然科学基金(批准号:17ZR1443000)资助的课题.

摘要: 本文基于分子束光学Stark减速理论,提出采用调制的红失谐光晶格来减速和囚禁任意脉冲超声分子束方案,并予以理论研究.以CH4超声分子束为例,利用Monte-Carlo方法模拟了调制光晶格中的分子减速与囚禁的动力学过程,给出减速级数、同步分子初始位相角与减速效果的关系.研究结果表明:随着减速级数的增加,被减速的分子波包逐渐从原来的分子速度分布的大波包中分离开来,且减速级数越高,减速后的分子速度越小.在其他条件相同时同步分子初始位相角越大,减速波包内的分子数目越少,同时位相空间被压缩.与未调制的光晶格减速方案相比,本方案中无分子自由飞行过程,在相同的光晶格长度内完成了双倍的减速级数.当光晶格长度取3.71 mm时,模拟结果显示CH4分子从280 m/s减速至172 m/s,而未调制光晶格只能将CH4分子从280 m/s减速至232 m/s,减速效果提高了26%.本方案可以集分子的减速、囚禁于一体,是一种新型的分子光学功能器件,在冷分子光学、量子信息、冷化学等前沿研究领域中有潜在的应用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回