搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝中气泡在电子束辐照下的异常放热现象

杜玉峰 崔丽娟 李金升 李然然 万发荣

引用本文:
Citation:

铝中气泡在电子束辐照下的异常放热现象

杜玉峰, 崔丽娟, 李金升, 李然然, 万发荣

Anomalous heat-releasing phenomenon from bubbles in aluminum induced by electron beam irradiation

Du Yu-Feng, Cui Li-Juan, Li Jin-Sheng, Li Ran-Ran, Wan Fa-Rong
PDF
导出引用
  • 在室温下,利用离子加速器对纯铝透射样品分别注入He+,Ne+和Ar+三种惰性气体离子,通过透射电子显微镜原位观察分析了纯铝中三种气体气泡在电子束辐照下形貌及电子衍射花样的变化.实验表明,在200 keV电子束辐照下,三种惰性气体气泡均会合并长大,亮度逐渐增强,最终破裂,气泡内部产生许多约几个纳米的黑色斑点衬度像,选区电子衍射花样由单晶斑点衍射花样变为多晶衍射环.这一现象的原因可能是气泡在电子束辐照过程中发生了放热反应,使气泡附近铝熔化后再结晶产生多晶,从而在电子衍射花样中观察到了多晶衍射环.然而,氦气泡在80 keV电子束辐照下氦气泡形貌和选区电子衍射花样保持不变,辐照后衍射花样中无多晶衍射环产生;氦氩混合气体气泡在200 keV电子束辐照下气泡形貌和选区电子衍射花样同样保持不变;这可能与电子束能量和气泡内气体压力有关.
    In the early 1990s, Japanese scholars unexpectedly observed that single crystal changes into polycrystal in deuterium-implanted aluminum under electron irradiation, but never found the same phenomenon in the hydrogen-implanted aluminum. However, previous study of our group has proved that the polycrystalline phenomenon can also be observed in hydrogen-implanted aluminum during electron irradiation. In this paper, the behavior of inert gas bubbles in aluminum under electron irradiation is investigated, aiming to further explore the effects of ion species, electron voltage and the pressure of bubbles on the anomalous heat-releasing reaction of bubbles induced by electron irradiation. In the experiment, the transmission electron microscope (TEM) samples of pure aluminum were implanted with He+, Ne+, Ar+ respectively by ion accelerator at room temperature. The TEM is used to in-situ observe and investigate the evolution of microstructure and the change of selected electron diffraction patterns of gas bubbles during electron irradiation. The results show that gas bubbles form in aluminum sample after ion implantation. During 200 keV electron irradiation TEM results show that the three kinds of inert gas bubbles all coalesce, grow up and bust separately. Finally, lots of nanoscale black dots appear inside them. At the same time, the electron diffraction patterns change from single crystal diffraction spots to polycrystalline diffraction rings. The dark field images indicate that the diffraction rings are induced by these black dots. Moreover, from the characterization of the diffraction rings, it is known that these black dots are pure aluminum rather than aluminum oxide. Therefore, the possibility that the diffraction rings result from aluminum oxide is eliminated. It is assumed that a certain kind of heat-releasing reaction should happen when the gas bubbles are irradiated by electrons, which leads to the poly-crystallization of aluminum after electron irradiation. However, while helium bubbles are irradiated by electrons with an energy of 80 keV, no diffraction ring is observed after electron irradiation. The same phenomenon as that in the case of helium bubbles irradiated by 80 keV electrons is observed. When helium and argon mixed bubbles with polygonal shape are irradiated by 200 keV electrons, no diffraction ring is observed after electron irradiation either. The reason might be related to the energy of the electron beam and the pressure of gas bubbles separately. There should be a threshold value of electron voltage for the heat-releasing reaction. In addition, the pressure of the gas bubbles is also a key factor for the heat-releasing reaction. The heat-releasing phenomenon of gas bubbles reminds us of the sonoluminescence phenomenon. By model calculation, it is predicted that there is a plasma core in the bubble during sonoluminescence. According to the hint from researches of sonoluminescence, an assumption is made to explain the mechanism of heat-releasing reaction of gas bubbles during electron irradiation. It is that the implanted gas in high pressure bubbles in aluminum is excited into plasma during electron irradiation. When the energy of plasma in the bubbles is accumulated to a certain degree, the plasma is extinguished suddenly. In this process, a lot of heat is released to melt the aluminum, thus leading the aluminum to recrystallize.
      通信作者: 万发荣, wanfr@mater.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11875085,59971010)资助的课题.
      Corresponding author: Wan Fa-Rong, wanfr@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875085, 59971010).
    [1]

    Trinkaus H 1983 Radiat. Eff. 78 189

    [2]

    Swijgenhoven H V, Knuyt G, Vanoppen J, Stals L M 1983 J. Nucl. Mater. 114 157

    [3]

    Krishan K 1982 Radiat. Eff. 66 121

    [4]

    Donnelly S E 1985 Radiat. Eff. 90 1

    [5]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [6]

    Johnson P B, Lawson F 2006 Nucl. Instrum. Methods Phys. Res. B 243 325

    [7]

    Kinoshita H, Takahashi H 1992 Bull. Fac. Eng. Hokkaido Univ. 162 109

    [8]

    Kamada K, Kinoshita H, Takahashi H, Kakihana H 1996 J. At. Energy Soc. 38 143

    [9]

    Kamada K, Kinoshita H, Takahashi H 1996 Jpn. J. Appl. Phys. 35 738

    [10]

    Kamada K 1992 Jpn. J. Appl. Phys. 31 L1287

    [11]

    Li J, Gao J, Wan F R 2016 Acta Phys. Sin. 65 026102 (in Chinese)[李杰, 高进, 万发荣 2016 物理学报 65 026102]

    [12]

    Li J 2015 M. S. Thesis (Beijing: University of Science and Technology Beijing) (in Chinese)[李杰2015 硕士学位论文 (北京: 北京科技大学)]

    [13]

    Rong Y H 2006 Introduction to Analytical Electron Microscopy (Beijing: Higher Education Press) p28 (in Chinese)[戎咏华 2006 分析电子显微学导论 (北京: 高等教育出版社) 第28页]

    [14]

    Vladimir A L, Ramesh S, Ahmed H Z 2005 PNAS 102 7069

    [15]

    Felde A V, Fink J, Mller-Heinzerling T, Pflger J, Scheerer B, Linker G, Kaletta D 1984 Phys. Rev. Lett. 53 922

    [16]

    Gandhi K, Dixit D K, Dixit B K 2010 Physica B 405 3075

    [17]

    Donnelly S E, Rossouw C J 1986 Nucl. Instrum. Meth. Phys. Res. 13 485

    [18]

    Mitsuishi K, Song M, Furuya K, Birtcher R C, Allen C W, Donnelly S E 1999 Nucl. Instrum. Meth. Phys. Res. 148 184

    [19]

    Evans J H, Mazey D J 1986 J. Nucl. Mater. 138 176

    [20]

    Cox R J, Goodhew P J, Evans J H 1987 Acta Metall. 35 2497

    [21]

    Wan F R 1993 Irradiation Damage in Metal Materials (Beijing: Science Press) p101 (in Chinese)[万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第101页]

    [22]

    Moss W C, Clarke D B, Young D A 1997 Science 276 1398

    [23]

    Flannigan D J, Suslick K S 2005 Nature 434 52

    [24]

    Zhang W J, An Y 2015 Chin. Phys. B 24 047802

    [25]

    Gharib M, Mendoza S, Rosenfeld M, Beizai M, Pereira F J A 2017 PNAS 114 12657

  • [1]

    Trinkaus H 1983 Radiat. Eff. 78 189

    [2]

    Swijgenhoven H V, Knuyt G, Vanoppen J, Stals L M 1983 J. Nucl. Mater. 114 157

    [3]

    Krishan K 1982 Radiat. Eff. 66 121

    [4]

    Donnelly S E 1985 Radiat. Eff. 90 1

    [5]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [6]

    Johnson P B, Lawson F 2006 Nucl. Instrum. Methods Phys. Res. B 243 325

    [7]

    Kinoshita H, Takahashi H 1992 Bull. Fac. Eng. Hokkaido Univ. 162 109

    [8]

    Kamada K, Kinoshita H, Takahashi H, Kakihana H 1996 J. At. Energy Soc. 38 143

    [9]

    Kamada K, Kinoshita H, Takahashi H 1996 Jpn. J. Appl. Phys. 35 738

    [10]

    Kamada K 1992 Jpn. J. Appl. Phys. 31 L1287

    [11]

    Li J, Gao J, Wan F R 2016 Acta Phys. Sin. 65 026102 (in Chinese)[李杰, 高进, 万发荣 2016 物理学报 65 026102]

    [12]

    Li J 2015 M. S. Thesis (Beijing: University of Science and Technology Beijing) (in Chinese)[李杰2015 硕士学位论文 (北京: 北京科技大学)]

    [13]

    Rong Y H 2006 Introduction to Analytical Electron Microscopy (Beijing: Higher Education Press) p28 (in Chinese)[戎咏华 2006 分析电子显微学导论 (北京: 高等教育出版社) 第28页]

    [14]

    Vladimir A L, Ramesh S, Ahmed H Z 2005 PNAS 102 7069

    [15]

    Felde A V, Fink J, Mller-Heinzerling T, Pflger J, Scheerer B, Linker G, Kaletta D 1984 Phys. Rev. Lett. 53 922

    [16]

    Gandhi K, Dixit D K, Dixit B K 2010 Physica B 405 3075

    [17]

    Donnelly S E, Rossouw C J 1986 Nucl. Instrum. Meth. Phys. Res. 13 485

    [18]

    Mitsuishi K, Song M, Furuya K, Birtcher R C, Allen C W, Donnelly S E 1999 Nucl. Instrum. Meth. Phys. Res. 148 184

    [19]

    Evans J H, Mazey D J 1986 J. Nucl. Mater. 138 176

    [20]

    Cox R J, Goodhew P J, Evans J H 1987 Acta Metall. 35 2497

    [21]

    Wan F R 1993 Irradiation Damage in Metal Materials (Beijing: Science Press) p101 (in Chinese)[万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第101页]

    [22]

    Moss W C, Clarke D B, Young D A 1997 Science 276 1398

    [23]

    Flannigan D J, Suslick K S 2005 Nature 434 52

    [24]

    Zhang W J, An Y 2015 Chin. Phys. B 24 047802

    [25]

    Gharib M, Mendoza S, Rosenfeld M, Beizai M, Pereira F J A 2017 PNAS 114 12657

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [3] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [4] 周书星, 方仁风, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. InP HEMT外延结构材料抗电子辐照加固设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211265
    [5] 李然然, 张一帆, 殷玉鹏, 渡边英雄, 韩文妥, 易晓鸥, 刘平平, 张高伟, 詹倩, 万发荣. 注氢纯铝中间隙型位错环一维迁移现象的原位观察. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211229
    [6] 吴学科, 黄伟其, 董泰阁, 王刚, 刘世荣, 秦朝介. 热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响. 物理学报, 2016, 65(10): 104202. doi: 10.7498/aps.65.104202
    [7] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化. 物理学报, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [8] 玛丽娅, 李豫东, 郭旗, 艾尔肯, 王海娇, 曾骏哲. In0.53Ga0.47As/InP量子阱与体材料的1 MeV电子束辐照光致发光谱研究. 物理学报, 2015, 64(15): 154217. doi: 10.7498/aps.64.154217
    [9] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [10] 李论雄, 苏江滨, 吴燕, 朱贤方, 王占国. 电子束诱导单壁碳纳米管不稳定的新观察. 物理学报, 2012, 61(3): 036401. doi: 10.7498/aps.61.036401
    [11] 赵衡煜, 俞平胜, 郭鑫, 苏良碧, 李欣年, 方晓明, 杨秋红, 徐军. 电子束辐照诱导Bi:α-BaB2O4 单晶近红外宽带发光的研究. 物理学报, 2011, 60(9): 097802. doi: 10.7498/aps.60.097802
    [12] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型:以Al为例. 物理学报, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [13] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [14] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞. 从头算方法研究面心立方铝在高温高压下的热力学状态方程. 物理学报, 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [15] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [16] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [17] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [18] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [19] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [20] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
计量
  • 文章访问数:  4552
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 修回日期:  2018-07-21
  • 刊出日期:  2018-11-05

/

返回文章
返回