搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷原子系综自旋噪声谱实验研究

杨煜林 白乐乐 张露露 何军 温馨 王军民

引用本文:
Citation:

铷原子系综自旋噪声谱实验研究

杨煜林, 白乐乐, 张露露, 何军, 温馨, 王军民

Experimental investigation of spin noise spectroscopy of rubidium atomic ensemble

Yang Yu-Lin, Bai Le-Le, Zhang Lu-Lu, He Jun, Wen Xin, Wang Jun-Min
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 自旋噪声谱是一种测量自旋涨落的光谱技术, 由于无扰动的测量机制, 其光谱信号非常微弱. 本文基于含有一定压力的缓冲气体的天然丰度铷原子气室, 搭建了无外磁干扰的铷原子系综自旋噪声谱测量装置, 获得了微弱的铷原子系综自旋噪声谱信号, 实现了对铷原子系综自旋特性的测量与表征. 研究了探测光光强、频率失谐量、铷原子数密度等参数对自旋噪声谱信号的影响. 自旋噪声谱信号的积分与探测光光强的平方成正比, 光强会展宽自旋噪声谱的半高全宽. 自旋噪声谱信号的积分依赖于探测光的失谐量, 共振处呈现凹陷, 这是由一定压力的缓冲气体的充入引起均匀展宽所导致. 自旋噪声信号的积分与原子数密度的1/2次幂成正比. 本研究有助于铷原子自旋噪声谱技术应用于磁场的精密测量等方面, 也为高信噪比、小型化铷原子自旋噪声谱测量系统的研制提供了参考.
    Spin noise spectroscopy is a very sensitive undisturbed spectroscopic technique for measuring atomic spin fluctuations by using a far-detuned probe laser beam. In this paper, we describe an experimental setup for measuring the spin noise spectroscopy. The spin noise spectra of Rubidium atomic vapor cell filled with 10 Torr of Neon gas and 20 Torr of Helium gas as buffer gas are investigated in a magnetically shielded environment. The dependence of the spin noise power spectral density, separately, on the probe beam’s intensity (I ), the probe beam’s frequency detuning (Δ) and Rubidium atomic number density (n) are measured. The integrated power of Rubidium atomic spin noise spectra is scaled as$ {I^2}$. Owing to homogeneous broadening, the full width at half maximum of transmission spectrum of the same cell is broadened to $\Delta {\nu _t} = {\rm{6}}.{\rm{9}}\;{\rm{GH}}{\rm{z}}$. Center frequency of transmission spectrum is set to be $\varDelta = {\rm{0}}$. The probe beam’s frequency detuning is larger than the half width at half maximum of the transmission spectrum $\left| \varDelta \right| > {{\Delta {\nu _t}}}/{{\rm{2}}}$, so the integrated power of Rubidium atomic spin noise spectra is scaled as $\varDelta^{-1}$. And there is a dip for $|\varDelta| < {{\Delta {\nu _t}}}/{{\rm{2}}}$ as a result of collisions between the buffer gas and Rubidium atoms. The integrated power of Rubidium atomic spin noise spectra is scaled as $ \sqrt n $. The Rubidium atomic spin's transverse relaxation time becomes shorter while the temperature increases. Only at the condition of non-perturbative probe, including far-off-resonant laser, weak laser intensity and uniform transverse magnetic field, the measured full width at half maximum will be close to the intrinsic linewidth of spin noise spectrum. In this way, we can obtain the Rubidium atomic spin's transverse relaxation time. This work can be applied to the field of physical constants precision measurement, like Lande g factor and isotopic abundance ratio. In addition, it provides an important reference for developing the high signal-to-noise ratio and compact spin noise spectrometer.
      通信作者: 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2017YFA0304502)、国家自然科学基金(批准号: 61905133, 11974226, 11774210, 61875111)、山西省研究生教育创新项目(博士类)(批准号: 2020BY024)和山西省1331工程重点项目建设资助的课题
      Corresponding author: Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 61905133, 11974226, 11774210, 61875111), the Graduate Innovation Project (PhD Candidates) of Shanxi Province, China (Grant No. 2020BY024), and the 1331 Project for Key Subject Construction of Shanxi Province, China
    [1]

    White D R, Galleano R, Actis A, et al. 1996 Metrologia 33 325Google Scholar

    [2]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [3]

    Aleksandrov E B, Zapasskii V S 1981 Sov. Phys. JETP 54 64

    [4]

    Sleater T, Hahn E L, Hilbert C, Clarke J 1985 Phys. Rev. Lett. 55 1742Google Scholar

    [5]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar

    [6]

    Jian M, Ping S, Xuan Q, Wei L, Yang J 2016 Chin. Phys. B 25 117203Google Scholar

    [7]

    Jian M, Ping S, Xuan Q, Yaxuan S, Yang J 2017 Sci. Rep. 7 10238Google Scholar

    [8]

    史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201Google Scholar

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar

    [9]

    Yuan J T, Ya W, Ling C, Kai F Z 2020 Phys. Rev. A 101 013821Google Scholar

    [10]

    Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar

    [11]

    Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar

    [12]

    Lucivero V G, Jimenez-Martinez R, Kong J, Mitchell M W 2016 Phys. Rev. A 93 053802Google Scholar

    [13]

    Lucivero V G, Dimic A, Kong J, Jiménez-Martínez R, Mitchell M W 2017 Phys. Rev. A 95 041803Google Scholar

    [14]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar

    [15]

    Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar

    [16]

    Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar

    [17]

    Yang L, Glasenapp P, Greilich A, et al. 2014 Nat. Commun. 5 4949Google Scholar

    [18]

    Zapasskii V S 2013 Adv. Opt. Photonics 5 131Google Scholar

    [19]

    李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228

    Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228

    [20]

    郭志超, 张桐耀, 张靖 2020 物理学报 69 037201Google Scholar

    Guo Z C, Zhang T Y, Zhang J 2020 Acta Phys. Sin. 69 037201Google Scholar

    [21]

    Yashchuk V V, Budker D, Davis J R 2000 Rev. Sci. Instrum. 71 341Google Scholar

    [22]

    Zapasskii V S, Greilich A, Crooker S A, et al. 2013 Phys. Rev. Lett. 110 176601Google Scholar

    [23]

    Ke Z, Nan Z, Yan H W 2020 Sci. Rep. 10 2258Google Scholar

    [24]

    James K 2013 Ph. D. Thesis (Durham: Durham University)

  • 图 1  铷原子系综自旋噪声谱的测量原理示意图

    Fig. 1.  Schematic diagram of rubidium atomic ensemble spin noise spectroscopy measurement.

    图 2  铷原子系综自旋噪声测量的实验装置示意图. λ/2, 1/2波片; APP, 整形棱镜对; ISO, 光隔离器; PBS, 偏振分光棱镜; NDF, 衰减片; M, 0°高反镜; λ/4, 1/4波片; PD, 光电探测器; HF, 45°高反镜; DPD, 差分探测器

    Fig. 2.  Schematic diagram of experimental setup for measuring rubidium atomic ensemble's spin noise spectroscopy. λ/2, half-wave plate; APP, anamorphic prism pairs; ISO, optical isolator;, PBS, polarization beam splitter cube; NDF, neutral density filter; M, 0° high-reflectivity mirror; λ/4, quarter-wave plate; PD, photodetector; HF, 45° high -reflectivity mirror; DPD, differential photodiode.

    图 3  铷原子D1线饱和吸收光谱

    Fig. 3.  Saturation absorption spectra of rubidium atomic D1 line.

    图 4  典型的热平衡状态下铷原子自旋噪声谱

    Fig. 4.  Spin noise spectra of rubidium atoms in a thermal equilibrium state.

    图 5  (a) 不同探测光光强下的铷原子自旋噪声谱; (b)自旋噪声谱信号幅度与探测光光强的关系, $S = \kappa \times {I^2}$拟合数据

    Fig. 5.  (a) Rubidium spin noise spectra at different probe optical instensity; (b) relationship between spin noise spectrum signal amplitude and probe optical intensity, with the data fitted by $S = \kappa \times {I^2}$.

    图 6  (a) 铷原子D1线的透射谱; (b)积分后的85Rb自旋噪声信号随探测光频率变化. 黑色方块为实验数据, 根据(3)式拟合得到红色曲线

    Fig. 6.  (a) Transmission spectra of rubidium atomic D1 line; (b) 85Rb spin noise signal intensity (integrated) varies with probe light frequency in a naturally isotopic abundant rubidium atomic ensemble containing 10 Torr neon gas and 20 Torr helium gas. The black squares are experimental data and the red curve is fitted by Eq. (3), respectively.

    图 7  (a)不同温度(25−65 ℃)下85Rb原子的自旋噪声谱; (b)不同原子数密度下的自旋噪声信号

    Fig. 7.  (a) Spin noise spectrum of 85Rb at some different temperatures (25−65 ℃); (b) the spin noise signal amplitude versus atomic number densities.

  • [1]

    White D R, Galleano R, Actis A, et al. 1996 Metrologia 33 325Google Scholar

    [2]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [3]

    Aleksandrov E B, Zapasskii V S 1981 Sov. Phys. JETP 54 64

    [4]

    Sleater T, Hahn E L, Hilbert C, Clarke J 1985 Phys. Rev. Lett. 55 1742Google Scholar

    [5]

    Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar

    [6]

    Jian M, Ping S, Xuan Q, Wei L, Yang J 2016 Chin. Phys. B 25 117203Google Scholar

    [7]

    Jian M, Ping S, Xuan Q, Yaxuan S, Yang J 2017 Sci. Rep. 7 10238Google Scholar

    [8]

    史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201Google Scholar

    Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar

    [9]

    Yuan J T, Ya W, Ling C, Kai F Z 2020 Phys. Rev. A 101 013821Google Scholar

    [10]

    Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar

    [11]

    Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar

    [12]

    Lucivero V G, Jimenez-Martinez R, Kong J, Mitchell M W 2016 Phys. Rev. A 93 053802Google Scholar

    [13]

    Lucivero V G, Dimic A, Kong J, Jiménez-Martínez R, Mitchell M W 2017 Phys. Rev. A 95 041803Google Scholar

    [14]

    Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar

    [15]

    Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar

    [16]

    Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar

    [17]

    Yang L, Glasenapp P, Greilich A, et al. 2014 Nat. Commun. 5 4949Google Scholar

    [18]

    Zapasskii V S 2013 Adv. Opt. Photonics 5 131Google Scholar

    [19]

    李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228

    Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228

    [20]

    郭志超, 张桐耀, 张靖 2020 物理学报 69 037201Google Scholar

    Guo Z C, Zhang T Y, Zhang J 2020 Acta Phys. Sin. 69 037201Google Scholar

    [21]

    Yashchuk V V, Budker D, Davis J R 2000 Rev. Sci. Instrum. 71 341Google Scholar

    [22]

    Zapasskii V S, Greilich A, Crooker S A, et al. 2013 Phys. Rev. Lett. 110 176601Google Scholar

    [23]

    Ke Z, Nan Z, Yan H W 2020 Sci. Rep. 10 2258Google Scholar

    [24]

    James K 2013 Ph. D. Thesis (Durham: Durham University)

  • [1] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱. 物理学报, 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [2] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响. 物理学报, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [3] 尚雅轩, 马健, 史平, 钱轩, 李伟, 姬扬. 铷原子气体自旋噪声谱的测量与改进. 物理学报, 2018, 67(8): 087201. doi: 10.7498/aps.67.20180098
    [4] 史平, 马健, 钱轩, 姬扬, 李伟. 铷原子气体自旋噪声谱测量的信噪比分析. 物理学报, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [5] 朱孟龙, 董玉兰, 钟海政, 何军. CdTe量子点的室温激子自旋弛豫动力学. 物理学报, 2014, 63(12): 127202. doi: 10.7498/aps.63.127202
    [6] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [7] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [8] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [9] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征. 物理学报, 2011, 60(1): 017204. doi: 10.7498/aps.60.017204
    [10] 胡长城, 王刚, 叶慧琪, 刘宝利. 瞬态自旋光栅系统的建设及其在自旋输运研究中的应用. 物理学报, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [11] 刘晓东, 王玮竹, 高瑞鑫, 赵建华, 文锦辉, 林位株, 赖天树. 室温下(Ga,Mn)As中载流子的自旋弛豫特性. 物理学报, 2008, 57(6): 3857-3861. doi: 10.7498/aps.57.3857
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 刘绍鼎, 程木田, 王 霞, 王取泉. 激子自旋弛豫对简并量子点发射光子对纠缠度的影响. 物理学报, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [14] 孙 征, 徐仲英, 阮学忠, 姬 扬, 孙宝权, 倪海桥. InAs单层和亚单层结构中的自旋动力学研究. 物理学报, 2007, 56(5): 2958-2961. doi: 10.7498/aps.56.2958
    [15] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [16] 吴 羽, 焦中兴, 雷 亮, 文锦辉, 赖天树, 林位株. 半导体量子阱中电子自旋弛豫和动量弛豫. 物理学报, 2006, 55(6): 2961-2965. doi: 10.7498/aps.55.2961
    [17] 吴 强, 郑瑞伦. 含铁磁颗粒的颗粒膜自旋激发弛豫研究. 物理学报, 2005, 54(7): 3397-3401. doi: 10.7498/aps.54.3397
    [18] 潘少华, 厚美英. 自旋交换碰撞占主导时光泵硷金属原子的电子自旋弛豫. 物理学报, 1984, 33(8): 1177-1181. doi: 10.7498/aps.33.1177
    [19] 黄武汉, 林福成, 楼祺洪. 红宝石中自旋—晶格弛豫直接过程的计算. 物理学报, 1965, 21(8): 1500-1510. doi: 10.7498/aps.21.1500
    [20] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  8632
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-12
  • 修回日期:  2020-08-12
  • 上网日期:  2020-11-30
  • 刊出日期:  2020-12-05

/

返回文章
返回