-
自旋噪声谱是一种测量自旋涨落的光谱技术, 由于无扰动的测量机制, 其光谱信号非常微弱. 本文基于含有一定压力的缓冲气体的天然丰度铷原子气室, 搭建了无外磁干扰的铷原子系综自旋噪声谱测量装置, 获得了微弱的铷原子系综自旋噪声谱信号, 实现了对铷原子系综自旋特性的测量与表征. 研究了探测光光强、频率失谐量、铷原子数密度等参数对自旋噪声谱信号的影响. 自旋噪声谱信号的积分与探测光光强的平方成正比, 光强会展宽自旋噪声谱的半高全宽. 自旋噪声谱信号的积分依赖于探测光的失谐量, 共振处呈现凹陷, 这是由一定压力的缓冲气体的充入引起均匀展宽所导致. 自旋噪声信号的积分与原子数密度的1/2次幂成正比. 本研究有助于铷原子自旋噪声谱技术应用于磁场的精密测量等方面, 也为高信噪比、小型化铷原子自旋噪声谱测量系统的研制提供了参考.Spin noise spectroscopy is a very sensitive undisturbed spectroscopic technique for measuring atomic spin fluctuations by using a far-detuned probe laser beam. In this paper, we describe an experimental setup for measuring the spin noise spectroscopy. The spin noise spectra of Rubidium atomic vapor cell filled with 10 Torr of Neon gas and 20 Torr of Helium gas as buffer gas are investigated in a magnetically shielded environment. The dependence of the spin noise power spectral density, separately, on the probe beam’s intensity (I ), the probe beam’s frequency detuning (Δ) and Rubidium atomic number density (n) are measured. The integrated power of Rubidium atomic spin noise spectra is scaled as
$ {I^2}$ . Owing to homogeneous broadening, the full width at half maximum of transmission spectrum of the same cell is broadened to$\Delta {\nu _t} = {\rm{6}}.{\rm{9}}\;{\rm{GH}}{\rm{z}}$ . Center frequency of transmission spectrum is set to be$\varDelta = {\rm{0}}$ . The probe beam’s frequency detuning is larger than the half width at half maximum of the transmission spectrum$\left| \varDelta \right| > {{\Delta {\nu _t}}}/{{\rm{2}}}$ , so the integrated power of Rubidium atomic spin noise spectra is scaled as$\varDelta^{-1}$ . And there is a dip for$|\varDelta| < {{\Delta {\nu _t}}}/{{\rm{2}}}$ as a result of collisions between the buffer gas and Rubidium atoms. The integrated power of Rubidium atomic spin noise spectra is scaled as$ \sqrt n $ . The Rubidium atomic spin's transverse relaxation time becomes shorter while the temperature increases. Only at the condition of non-perturbative probe, including far-off-resonant laser, weak laser intensity and uniform transverse magnetic field, the measured full width at half maximum will be close to the intrinsic linewidth of spin noise spectrum. In this way, we can obtain the Rubidium atomic spin's transverse relaxation time. This work can be applied to the field of physical constants precision measurement, like Lande g factor and isotopic abundance ratio. In addition, it provides an important reference for developing the high signal-to-noise ratio and compact spin noise spectrometer.-
Keywords:
- spin noise spectroscopy /
- atomic spin fluctuations /
- spin relaxation /
- rubidium atomic vapor /
- buffer gas
[1] White D R, Galleano R, Actis A, et al. 1996 Metrologia 33 325Google Scholar
[2] Bloch F 1946 Phys. Rev. 70 460Google Scholar
[3] Aleksandrov E B, Zapasskii V S 1981 Sov. Phys. JETP 54 64
[4] Sleater T, Hahn E L, Hilbert C, Clarke J 1985 Phys. Rev. Lett. 55 1742Google Scholar
[5] Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar
[6] Jian M, Ping S, Xuan Q, Wei L, Yang J 2016 Chin. Phys. B 25 117203Google Scholar
[7] Jian M, Ping S, Xuan Q, Yaxuan S, Yang J 2017 Sci. Rep. 7 10238Google Scholar
[8] 史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201Google Scholar
Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar
[9] Yuan J T, Ya W, Ling C, Kai F Z 2020 Phys. Rev. A 101 013821Google Scholar
[10] Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar
[11] Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar
[12] Lucivero V G, Jimenez-Martinez R, Kong J, Mitchell M W 2016 Phys. Rev. A 93 053802Google Scholar
[13] Lucivero V G, Dimic A, Kong J, Jiménez-Martínez R, Mitchell M W 2017 Phys. Rev. A 95 041803Google Scholar
[14] Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar
[15] Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar
[16] Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar
[17] Yang L, Glasenapp P, Greilich A, et al. 2014 Nat. Commun. 5 4949Google Scholar
[18] Zapasskii V S 2013 Adv. Opt. Photonics 5 131Google Scholar
[19] 李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228
Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228
[20] 郭志超, 张桐耀, 张靖 2020 物理学报 69 037201Google Scholar
Guo Z C, Zhang T Y, Zhang J 2020 Acta Phys. Sin. 69 037201Google Scholar
[21] Yashchuk V V, Budker D, Davis J R 2000 Rev. Sci. Instrum. 71 341Google Scholar
[22] Zapasskii V S, Greilich A, Crooker S A, et al. 2013 Phys. Rev. Lett. 110 176601Google Scholar
[23] Ke Z, Nan Z, Yan H W 2020 Sci. Rep. 10 2258Google Scholar
[24] James K 2013 Ph. D. Thesis (Durham: Durham University)
-
图 2 铷原子系综自旋噪声测量的实验装置示意图. λ/2, 1/2波片; APP, 整形棱镜对; ISO, 光隔离器; PBS, 偏振分光棱镜; NDF, 衰减片; M, 0°高反镜; λ/4, 1/4波片; PD, 光电探测器; HF, 45°高反镜; DPD, 差分探测器
Fig. 2. Schematic diagram of experimental setup for measuring rubidium atomic ensemble's spin noise spectroscopy. λ/2, half-wave plate; APP, anamorphic prism pairs; ISO, optical isolator;, PBS, polarization beam splitter cube; NDF, neutral density filter; M, 0° high-reflectivity mirror; λ/4, quarter-wave plate; PD, photodetector; HF, 45° high -reflectivity mirror; DPD, differential photodiode.
图 5 (a) 不同探测光光强下的铷原子自旋噪声谱; (b)自旋噪声谱信号幅度与探测光光强的关系,
$S = \kappa \times {I^2}$ 拟合数据Fig. 5. (a) Rubidium spin noise spectra at different probe optical instensity; (b) relationship between spin noise spectrum signal amplitude and probe optical intensity, with the data fitted by
$S = \kappa \times {I^2}$ .图 6 (a) 铷原子D1线的透射谱; (b)积分后的85Rb自旋噪声信号随探测光频率变化. 黑色方块为实验数据, 根据(3)式拟合得到红色曲线
Fig. 6. (a) Transmission spectra of rubidium atomic D1 line; (b) 85Rb spin noise signal intensity (integrated) varies with probe light frequency in a naturally isotopic abundant rubidium atomic ensemble containing 10 Torr neon gas and 20 Torr helium gas. The black squares are experimental data and the red curve is fitted by Eq. (3), respectively.
-
[1] White D R, Galleano R, Actis A, et al. 1996 Metrologia 33 325Google Scholar
[2] Bloch F 1946 Phys. Rev. 70 460Google Scholar
[3] Aleksandrov E B, Zapasskii V S 1981 Sov. Phys. JETP 54 64
[4] Sleater T, Hahn E L, Hilbert C, Clarke J 1985 Phys. Rev. Lett. 55 1742Google Scholar
[5] Crooker S A, Rickel D G, Balatsky A V, Smith D L 2004 Nature 431 49Google Scholar
[6] Jian M, Ping S, Xuan Q, Wei L, Yang J 2016 Chin. Phys. B 25 117203Google Scholar
[7] Jian M, Ping S, Xuan Q, Yaxuan S, Yang J 2017 Sci. Rep. 7 10238Google Scholar
[8] 史平, 马健, 钱轩, 姬扬, 李伟 2017 物理学报 66 017201Google Scholar
Shi P, Ma J, Qian X, Ji Y, Li W 2017 Acta Phys. Sin. 66 017201Google Scholar
[9] Yuan J T, Ya W, Ling C, Kai F Z 2020 Phys. Rev. A 101 013821Google Scholar
[10] Römer M, Hübner J, Oestreich M 2007 Rev. Sci. Instrum. 78 103903Google Scholar
[11] Cronenberger S, Scalbert D 2016 Rev. Sci. Instrum. 87 093111Google Scholar
[12] Lucivero V G, Jimenez-Martinez R, Kong J, Mitchell M W 2016 Phys. Rev. A 93 053802Google Scholar
[13] Lucivero V G, Dimic A, Kong J, Jiménez-Martínez R, Mitchell M W 2017 Phys. Rev. A 95 041803Google Scholar
[14] Hübner J, Berski F, Dahbashi R, Oestreich M 2014 Phys. Status Solidi B 251 1824Google Scholar
[15] Pershin Y V, Slipko V A, Roy D, Sinitsyn N A 2013 Appl. Phys. Lett. 102 202405Google Scholar
[16] Dahbashi R, Hübner J, Berski F, Pierz K, Oestreich M 2014 Phys. Rev. Lett. 112 156601Google Scholar
[17] Yang L, Glasenapp P, Greilich A, et al. 2014 Nat. Commun. 5 4949Google Scholar
[18] Zapasskii V S 2013 Adv. Opt. Photonics 5 131Google Scholar
[19] 李晨, 丁畅, 张桐耀, 曹丹华, 吴裕斌, 陈院森 2017 量子光学学报 23 228
Li C, Ding C, Zhang T Y, Cao D H, Wu Y B, Chen Y S 2017 J. Quant. Opt. 23 228
[20] 郭志超, 张桐耀, 张靖 2020 物理学报 69 037201Google Scholar
Guo Z C, Zhang T Y, Zhang J 2020 Acta Phys. Sin. 69 037201Google Scholar
[21] Yashchuk V V, Budker D, Davis J R 2000 Rev. Sci. Instrum. 71 341Google Scholar
[22] Zapasskii V S, Greilich A, Crooker S A, et al. 2013 Phys. Rev. Lett. 110 176601Google Scholar
[23] Ke Z, Nan Z, Yan H W 2020 Sci. Rep. 10 2258Google Scholar
[24] James K 2013 Ph. D. Thesis (Durham: Durham University)
计量
- 文章访问数: 8632
- PDF下载量: 218
- 被引次数: 0