搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维范德瓦耳斯半导体莫尔超晶格实验研究进展

李听昕

引用本文:
Citation:

二维范德瓦耳斯半导体莫尔超晶格实验研究进展

李听昕

Recent experimental research progress of two-dimensional van der Waals semiconductor moiré superlattices

Li Ting-Xin
PDF
HTML
导出引用
  • 在二维范德瓦耳斯材料中, 可以通过转角及晶格失配构造周期性的莫尔超晶格. 自从实验上在“魔角”石墨烯系统中观察到关联绝缘体态和超导电性以来, 利用各种二维范德瓦耳斯材料构造莫尔超晶格并研究其中的新奇量子物态成为了凝聚态物理研究的热点和前沿问题. 本文主要综述了最近几年在二维半导体过渡金属硫族化合物莫尔超晶格系统中的相关实验进展. 在该系统中实现电子“平带”不依赖于特定魔角, 实验上, 一系列的关联电子物态和拓扑电子物态被相继发现和证实. 进一步的理论和实验研究有望在该系统中揭示更多的受电子关联作用和拓扑物理共同支配的新奇量子物态.
    A moiré superlattice can be formed by overlaying two atomically thin van der Waals materials with a rotation angle or with a lattice mismatch. Since the discovery of correlated insulators and superconductivity in magic angle twisted bilayer graphene, constructing moiré superlattices by various two-dimensional (2D) van der Waals materials and studying their novel properties emerge as a hot topic and research frontier in condensed matter physics. Here we review the recent experimental progress of 2D transition metal dichalcogenide moiré superlattices. In this system, the formation of moiré flat band does not rely on certain magic angles. Experimentally, a series of correlated electron states and topological states have been discovered and confirmed. Further theoretical and experimental studies can find a wealth of emergent phenomena caused by the combined influence of strong correlation and topology in transition metal dichalcogenide moiré superlattice.
      通信作者: 李听昕, txli89@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174249)和上海市自然科学基金(批准号: 22ZR1430900)资助的课题.
      Corresponding author: Li Ting-Xin, txli89@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174249) and the Natural Science Foundation of Shanghai, China (Grant No. 22ZR1430900)
    [1]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [2]

    Wang S, Scarabelli D, Du L, Kuznetsova Y Y, Pfeiffer L N, West K W, Gardner G C, Manfra M J, Pellegrini V, Wind S J, Pinczuk A 2018 Nat. Nanotechnol. 13 29

    [3]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [4]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [5]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [6]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [7]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [8]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [9]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [10]

    Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [11]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [12]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [13]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [14]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [15]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [16]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [17]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [18]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [19]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [20]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [21]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [24]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [25]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [26]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [27]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [28]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [29]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [30]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 592 43Google Scholar

    [31]

    Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2021 Nature 592 214Google Scholar

    [32]

    Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [33]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261Google Scholar

    [34]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [35]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249

    [36]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [37]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [38]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [39]

    Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2022 Science 375 437Google Scholar

    [40]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [41]

    Kha T, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [42]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [43]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [44]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [45]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [46]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [47]

    Jin C, Tao Z, Li T, Xu Y, Tang Y, Zhu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [48]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [49]

    Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoglu A 2020 Nature 580 472Google Scholar

    [50]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [51]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [52]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [53]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, Shan J 2021 Nat. Nanotechnol. 16 52Google Scholar

    [54]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

    [55]

    Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2022 Nat. Phys. 18 395Google Scholar

    [56]

    Wang X, Xiao C, Park H, Zhu J, Wang C, Taniguchi T, Watanabe K, Yan J, Xiao D, Gamelin D R, Yao W, Xu X 2022 Nature 604 648

    [57]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [58]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [59]

    Li H, Li S, Naik M H, Xie J, Li X, Regan E, Wang D, Zhao W, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [60]

    Li E, Hu J X, Feng X, Zhou Z, An L, Law K T, Wang N, Lin N 2021 Nat. Commun. 12 5601Google Scholar

    [61]

    Stansbury C H, Utama M I B, Fatuzzo C G, Regan E C, Wang D, Xiang Z, Ding M, Watanabe K, Taniguchi T, Blei M, Shen Y, Lorcy S, Bostwick A, Jozwiak C, Koch R, Tongay S, Avila J, Rotenberg E, Wang F, Lanzara A 2021 Sci. Adv. 7 eabf4387Google Scholar

    [62]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [63]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [64]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [65]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [66]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [67]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [68]

    Bednorz J G, Miiller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [69]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [70]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [71]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [72]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [73]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [74]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [75]

    Rosenberger M R, Chuang H J, Phillips M, Oleshko V P, McCreary K M, Sivaram S V, Hellberg C S, Jonker B T 2020 ACS Nano 14 4550Google Scholar

    [76]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [77]

    Pan H, Wu F, Das Sarma S 2020 Phys. Rev. B 102 201104(R

    [78]

    Morales-Durán N, Hu N C, Pawel P, MacDonald A H 2021 arXiv: 2108.03313 [cond-mat]

    [79]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [80]

    Pan H, Wu F, Das Sarma S 2020 Phys. Rev. Res. 2 033087Google Scholar

    [81]

    Devakul T, Crépel V, Zhang Y, Fu L 2021 Nat. Commn. 12 6730Google Scholar

    [82]

    Kumar A, Hu N C, MacDonald A H, Potter A C 2021 arXiv: 2110.11962 [cond-mat]

    [83]

    Shi Q, Shih E-M, Gustafsson M V, Rhodes D A, Kim B, Watanabe K, Taniguchi T, Papic Z, Hone J, Dean C R 2020 Nat. Nanotechnol. 15 569Google Scholar

    [84]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [85]

    Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [86]

    Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407(R

    [87]

    Pisoni R, Kormányos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [88]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [89]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano. Lett. 10 1271Google Scholar

    [90]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [91]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [92]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [93]

    Pan Y, Folsch S, Nie Y, Waters D, Lin Y C, Jariwala B, Zhang K, Cho K, Robinson J A, Feenstra R M 2018 Nano Lett. 18 1849Google Scholar

    [94]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [95]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [96]

    Hubbard J 1963 Proc. R. Soc. London, Ser. A 276 238Google Scholar

    [97]

    Quintanilla J, Hooley C 2009 Phys. World 22 32

    [98]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [99]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [100]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 e1600069Google Scholar

    [101]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039Google Scholar

    [102]

    Senthil T 2008 Phys. Rev. B 78 045109Google Scholar

    [103]

    Szasz A, Motruk J, Zaletel M P, Moore J E 2020 Phys. Rev. X 10 021042Google Scholar

    [104]

    Balents L 2010 Nature 464 199Google Scholar

    [105]

    Georges A, Kotliar G, Krauth W, Rozenberg A J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [106]

    Tang H, Carr S, Kaxiras E 2021 Phys. Rev. B 104 155415Google Scholar

    [107]

    Kundu S, Naik M H, Krishnamurthy H R, Jain M 2022 Phys. Rev. B 105 L081108Google Scholar

    [108]

    Zhou B T, Egan S, Franz M 2022 Phys. Rev. Res. 4 L012032Google Scholar

    [109]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [110]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [111]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401

    [112]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895

    [113]

    Ezawa M, Tanaka Y, Nagaosa N 2013 Sci. Rep. 3 2790Google Scholar

    [114]

    Hohenadler M, Assaad F F 2013 J. Phys. Condens. Matter 25 143201Google Scholar

    [115]

    Amaricci A, Budich J C, Capone M, Trauzettel B, Sangiovanni G 2015 Phys. Rev. Lett. 114 185701Google Scholar

    [116]

    Zhang Y, Devakul T, Fu L 2021 PNAS 118 e2112673118

    [117]

    Xie Y M, Zhang C P, Hu J X, Mak K F, Law K T 2022 Phys. Rev. Lett. 128 026402Google Scholar

    [118]

    Devakul T, Fu L 2021 arXiv: 2109.13909 [cond-mat]

    [119]

    Rademaker L 2022 Phys. Rev. B 105 195428

    [120]

    Pan H, Xie M, Wu F, Sarma S D 2021 arXiv: 2111.01152 [cond-mat]

    [121]

    Chang Y W, Chang Y C 2022 arXiv: 2203.10088 [cond-mat]

    [122]

    Li H, Kumar U, Sun K, Lin S Z 2021 Phys. Rev. Res. 3 L032070Google Scholar

  • 图 1  过渡金属硫族化合物 (a), (b) 2H相TMDc的结构示意图, 其中青色代表过渡金属原子, 黄色代表硫族元素原子; (c) 2H相TMDc的能带结构示意图

    Fig. 1.  Transition metal dichalcogenides: (a), (b) Schematic illustrations of 2H phase TMDc, where cyan balls denote transition metal atoms and yellow balls denote chalcogenide atoms; (c) schematic band structures of 2H TMDc.

    图 2  转角MoS2莫尔超晶格[91]. AA堆垛(3.5°转角, (a)—(d))和AB堆垛的(56.5°转角, (e)—(h))MoS2莫尔超晶格的示意图及高对称性点的堆垛示意图

    Fig. 2.  Twisted MoS2 moiré superlattices [91]: Schematics plots of AA-stacked (3.5° twisted, (a)–(d)) and AB-stacked (56.5° twisted, (e)–(h)) MoS2 moiré superlattices, the high-symmetry stackings are highlighted by circles.

    图 3  WSe2/WS2莫尔超晶格中的关联电子态 (a) 基于光学探测得到的WSe2/WS2莫尔超晶格样品的量子电容信号[44]; (b)莫尔超晶格Mott绝缘体和广义的Wigner晶态示意图[44]; (c) WSe2/WS2莫尔超晶格能带结构示意图[45]; (d) 不同温度下通过两端输运测量得到的WSe2/WS2莫尔超晶格的电阻随填充因子的变化[45]; (e) 通过磁光测量得到的等效g因子和Wiess温度随v的变化[45]. 值得指出的是, 图(a)中横轴n/n0的含义即为莫尔超晶格填充因子v ; 而图(d), (e)中横轴n/n0的含义为莫尔子带填充因子, 即为2v

    Fig. 3.  Correlated states in WSe2/WS2 moiré superlattices: (a) Quantum capacitance signals detected by optical probe in WSe2/WS2 moiré superlattices [44]; (b) schematic illustrations of Mott insulator and generalized Wigner crystal states [44]; (c) schematic band alignment of the WSe2/WS2 moiré superlattice; (d) temperature dependence of two-terminal resistance of WSe2/WS2 moiré superlattices versus moiré filling factors [45]; (e) g factors and Wiess temperatures versus moiré filling factors obtained by magneto-optical measurements [45]. The top x-axis n/n0 of panel (a) equals to the moiré filling factor v, whereas the x-axis n/n0 of panels (d) and (e) represents the moiré mini band filling factor, which equals to 2v.

    图 4  TMDc莫尔超晶格中的Mott相变 (a) 在转角WSe2莫尔超晶格中, 样品电阻随温度和填充因子的变化[62]; (b) 不同填充因子下转角WSe2电阻随温度变化规律的概括, 其中在相变临界区域电阻随温度的变化明显不同于费米液体[62]; (c) AA堆垛的WSe2/MoTe2莫尔超晶格样品的电阻随双栅极的变化[63]; (d) 保持莫尔子带半满时, 外加电场使WSe2/MoTe2中发生连续Mott相变[63]; (e) 莫尔子带半满时, 不同电场下的样品电阻随温度的变化, 可以清楚地看到Mott绝缘体到金属的相变[63].

    Fig. 4.  Mott transition in TMDc moiré superlattices: (a) Measured resistance versus temperature and moiré filling factors of twisted WSe2 moiré superlattices [62]; (b) summary of temperature dependent resistance of twisted WSe2 at various moiré filling factors [62]; (c) resistance of AA-stacked WSe2/MoTe2 moiré superlattices versus dual gates [63]; (d) Mott transition at half-filled moiré mini band induced by applied electric fields [63]; (e) when the first moiré mini band is half-filled, the measured temperature dependent resistance at various electric fields, where a transition from a Mott insulator phase to a metallic phase can be clearly identified[63].

    图 5  TMDc莫尔同质结中的拓扑能带结构[79] (a) 以1.2°转角的MoTe2莫尔超晶格为例, 计算得到的价带K谷的能带结构及莫尔子带的陈数; (b)态密度随莫尔子带填充因子的变化; (c)第一莫尔子带Berry曲率的分布; (d) 该系统中电子跳跃项的示意图, 不同颜色用以区分两层MoTe2

    Fig. 5.  Topological band structures in TMDc homo-bilayer moiré superlattices[79]: (a) Calculated band structure and Chern numbers at K valley of a 1.2° twisted MoTe2 twisted moiré superlattice; (b) density of state versus moiré filling factors; (c) Berry curvature distributions of the first moiré mini band; (d) illustration of the hopping terms.

    图 6  AB堆垛的WSe2/MoTe2莫尔超晶格中的拓扑量子态[65] (a) 莫尔超晶格及高对称点堆垛方式示意图, 其中M代表Mo或W原子, X代表Se或Te原子; (b)当莫尔子带填满时, 电场诱导系统发生能带绝缘体到量子自旋霍尔效应的相变; 当莫尔子带半满时, 电场诱导系统发生Mott绝缘体到量子反常霍尔效应的相变; 输运测量得到的纵向电阻Rxx (c)和霍尔电阻Rxy (d)随顶栅和底栅栅压变化的二维图, 测量温度为300 mK, 其中绿色虚线圆圈示意的是量子反常霍尔效应出现的区域; 在出现量子反常霍尔效应区域, 不同温度下测量得到的Rxx (e)和Rxy (f)随磁场的变化

    Fig. 6.  Topological states in AB-stacked WSe2/MoTe2 moiré superlattices [65]: (a) Schematic plots of moiré superlattices and high symmetry stacking points, where M denotes Mo or W atoms; X denotes Se or Te atoms. (b) Schematic illustrations of electric field induced topological phase transitions. A band insulator to a quantum spin Hall insulator transition is possible when the first moiré mini band is full-filled, and a Mott insulator to a quantum anomalous Hall insulator transition could occur when the first moiré mini band is half-filled. The measured Rxx (c) and Rxy (d) versus top and bottom gate voltages at 300 mK, where the green dashed line circle denotes the quantum anomalous Hall region. At the quantum anomalous Hall region, the measured Rxx and Rxy versus B-field at various temperatures are shown in (e) and (f), respectively.

  • [1]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [2]

    Wang S, Scarabelli D, Du L, Kuznetsova Y Y, Pfeiffer L N, West K W, Gardner G C, Manfra M J, Pellegrini V, Wind S J, Pinczuk A 2018 Nat. Nanotechnol. 13 29

    [3]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [4]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [5]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [6]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [7]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [8]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [9]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [10]

    Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [11]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [12]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [13]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [14]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [15]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [16]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [17]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [18]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [19]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [20]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [21]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [24]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [25]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [26]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [27]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [28]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [29]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [30]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 592 43Google Scholar

    [31]

    Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2021 Nature 592 214Google Scholar

    [32]

    Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [33]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261Google Scholar

    [34]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [35]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249

    [36]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [37]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [38]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [39]

    Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2022 Science 375 437Google Scholar

    [40]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [41]

    Kha T, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [42]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [43]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [44]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [45]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [46]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [47]

    Jin C, Tao Z, Li T, Xu Y, Tang Y, Zhu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [48]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [49]

    Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoglu A 2020 Nature 580 472Google Scholar

    [50]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [51]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [52]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [53]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, Shan J 2021 Nat. Nanotechnol. 16 52Google Scholar

    [54]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

    [55]

    Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2022 Nat. Phys. 18 395Google Scholar

    [56]

    Wang X, Xiao C, Park H, Zhu J, Wang C, Taniguchi T, Watanabe K, Yan J, Xiao D, Gamelin D R, Yao W, Xu X 2022 Nature 604 648

    [57]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [58]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [59]

    Li H, Li S, Naik M H, Xie J, Li X, Regan E, Wang D, Zhao W, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [60]

    Li E, Hu J X, Feng X, Zhou Z, An L, Law K T, Wang N, Lin N 2021 Nat. Commun. 12 5601Google Scholar

    [61]

    Stansbury C H, Utama M I B, Fatuzzo C G, Regan E C, Wang D, Xiang Z, Ding M, Watanabe K, Taniguchi T, Blei M, Shen Y, Lorcy S, Bostwick A, Jozwiak C, Koch R, Tongay S, Avila J, Rotenberg E, Wang F, Lanzara A 2021 Sci. Adv. 7 eabf4387Google Scholar

    [62]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [63]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [64]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [65]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [66]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [67]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [68]

    Bednorz J G, Miiller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [69]

    Bistritzer R, MacDonald A H 2011 PNAS 108 12233Google Scholar

    [70]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [71]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [72]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427

    [73]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [74]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [75]

    Rosenberger M R, Chuang H J, Phillips M, Oleshko V P, McCreary K M, Sivaram S V, Hellberg C S, Jonker B T 2020 ACS Nano 14 4550Google Scholar

    [76]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [77]

    Pan H, Wu F, Das Sarma S 2020 Phys. Rev. B 102 201104(R

    [78]

    Morales-Durán N, Hu N C, Pawel P, MacDonald A H 2021 arXiv: 2108.03313 [cond-mat]

    [79]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A H 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [80]

    Pan H, Wu F, Das Sarma S 2020 Phys. Rev. Res. 2 033087Google Scholar

    [81]

    Devakul T, Crépel V, Zhang Y, Fu L 2021 Nat. Commn. 12 6730Google Scholar

    [82]

    Kumar A, Hu N C, MacDonald A H, Potter A C 2021 arXiv: 2110.11962 [cond-mat]

    [83]

    Shi Q, Shih E-M, Gustafsson M V, Rhodes D A, Kim B, Watanabe K, Taniguchi T, Papic Z, Hone J, Dean C R 2020 Nat. Nanotechnol. 15 569Google Scholar

    [84]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [85]

    Fallahazad B, Movva H C P, Kim K, Larentis S, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2016 Phys. Rev. Lett. 116 086601Google Scholar

    [86]

    Larentis S, Movva H C P, Fallahazad B, Kim K, Behroozi A, Taniguchi T, Watanabe K, Banerjee S K, Tutuc E 2018 Phys. Rev. B 97 201407(R

    [87]

    Pisoni R, Kormányos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [88]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [89]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano. Lett. 10 1271Google Scholar

    [90]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [91]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [92]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [93]

    Pan Y, Folsch S, Nie Y, Waters D, Lin Y C, Jariwala B, Zhang K, Cho K, Robinson J A, Feenstra R M 2018 Nano Lett. 18 1849Google Scholar

    [94]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [95]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [96]

    Hubbard J 1963 Proc. R. Soc. London, Ser. A 276 238Google Scholar

    [97]

    Quintanilla J, Hooley C 2009 Phys. World 22 32

    [98]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [99]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [100]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 e1600069Google Scholar

    [101]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039Google Scholar

    [102]

    Senthil T 2008 Phys. Rev. B 78 045109Google Scholar

    [103]

    Szasz A, Motruk J, Zaletel M P, Moore J E 2020 Phys. Rev. X 10 021042Google Scholar

    [104]

    Balents L 2010 Nature 464 199Google Scholar

    [105]

    Georges A, Kotliar G, Krauth W, Rozenberg A J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [106]

    Tang H, Carr S, Kaxiras E 2021 Phys. Rev. B 104 155415Google Scholar

    [107]

    Kundu S, Naik M H, Krishnamurthy H R, Jain M 2022 Phys. Rev. B 105 L081108Google Scholar

    [108]

    Zhou B T, Egan S, Franz M 2022 Phys. Rev. Res. 4 L012032Google Scholar

    [109]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [110]

    Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [111]

    Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401

    [112]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895

    [113]

    Ezawa M, Tanaka Y, Nagaosa N 2013 Sci. Rep. 3 2790Google Scholar

    [114]

    Hohenadler M, Assaad F F 2013 J. Phys. Condens. Matter 25 143201Google Scholar

    [115]

    Amaricci A, Budich J C, Capone M, Trauzettel B, Sangiovanni G 2015 Phys. Rev. Lett. 114 185701Google Scholar

    [116]

    Zhang Y, Devakul T, Fu L 2021 PNAS 118 e2112673118

    [117]

    Xie Y M, Zhang C P, Hu J X, Mak K F, Law K T 2022 Phys. Rev. Lett. 128 026402Google Scholar

    [118]

    Devakul T, Fu L 2021 arXiv: 2109.13909 [cond-mat]

    [119]

    Rademaker L 2022 Phys. Rev. B 105 195428

    [120]

    Pan H, Xie M, Wu F, Sarma S D 2021 arXiv: 2111.01152 [cond-mat]

    [121]

    Chang Y W, Chang Y C 2022 arXiv: 2203.10088 [cond-mat]

    [122]

    Li H, Kumar U, Sun K, Lin S Z 2021 Phys. Rev. Res. 3 L032070Google Scholar

  • [1] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [2] 汤衍浩. 转角半导体过渡金属硫族化物莫尔超晶格中的新奇物态. 物理学报, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [3] 二维转角莫尔超晶格专题编者按. 物理学报, 2023, 72(6): 060101. doi: 10.7498/aps.72.060101
    [4] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学. 物理学报, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [6] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征. 物理学报, 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [7] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [8] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [9] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [10] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [11] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [12] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [13] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [14] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性. 物理学报, 2022, 71(12): 127202. doi: 10.7498/aps.71.20220064
    [15] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究. 物理学报, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [16] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [17] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [18] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [19] 徐 慧, 邓超生, 刘小良, 马松山, 伍晓赞. 一维长程关联无序系统中的电子态. 物理学报, 2007, 56(3): 1643-1648. doi: 10.7498/aps.56.1643
    [20] 范永昌, 李名生, 李白文. 原子激发态的二体电子关联变分计算. 物理学报, 1988, 37(10): 1633-1639. doi: 10.7498/aps.37.1633
计量
  • 文章访问数:  9357
  • PDF下载量:  689
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-27
  • 修回日期:  2022-04-16
  • 上网日期:  2022-06-06
  • 刊出日期:  2022-06-20

/

返回文章
返回