搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双包层光纤布拉格光栅传感器的锂电池组温度场监控

王浩 曹珊珊 苏俊豪 徐海涛 王震 郑加金 韦玮

引用本文:
Citation:

基于双包层光纤布拉格光栅传感器的锂电池组温度场监控

王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮

Temperature field monitoring of lithium battery pack based on double-clad fiber Bragg grating sensor

Wang Hao, Cao Shan-Shan, Su Jun-Hao, Xu Hai-Tao, Wang Zhen, Zheng Jia-Jin, Wei Wei
PDF
HTML
导出引用
  • 锂离子电池是当今最通用的储能技术之一, 锂电池的可靠性和安全性一直是业界追求的目标, 因此准确监控电池安全状态显得尤为重要. 锂电池内部的热失控是一切锂电池安全问题的根源, 为克服目前锂电池组温度测量系统测温精度不高, 较高温度下长时间工作稳定性不足等问题, 本文提出了一种基于双包层光纤布拉格光栅(FBG)的准分布式锂电池组温度监测系统. 通过搭建4通道16个双包层FBG点位对18650锂电池组进行温度场及鼓包形变监测, 结果表明在0—450 ℃的温度条件下可以精确确定由短路等问题产生异常温度升高的点位, 相应温度灵敏度为10 pm/℃, 分辨率达0.1 ℃, 并且贴于锂电池壳体表面的双包层FBG还可以监测电池壳体表面出现的鼓包形变现象, 其纵向压力应变灵敏度达142 pm/N. 本文的双包层FBG准分布式锂电池组温度场监测系统既可以保证高精度的温度、形变测量, 同时具有良好的稳定性和抗干扰能力, 表明本文的研究工作有望为锂电池组的安全监测和使用提供可靠的理论与实验依据.
    Lithium-ion battery is one of the most versatile energy storage technologies today, and the reliability and safety of lithium battery have always been the target pursued by the industry all the time, so it is particularly important to accurately monitor the safety status of the battery. Actually, the ultimate cause of all lithium battery safety problems lies in the thermal runaway inside the lithium battery. In order to overcome the current problems of temperature measurement systems, such as low accuracy and insufficient stability for long-time operation at relatively high temperature, a temperature monitoring system of quasi-distributed lithium battery based on double clad Fiber Bragg Grating (FBG) is proposed in this work. After the monitoring of the temperature field and bulge deformation of 18650 lithium battery pack by building 4 channels and 16 double clad FBG points to monitor the temperature field and bulge deformation of 18650 lithium battery pack, the results show that the points with abnormal temperature rise caused by short circuit and other problems can be accurately determined under the temperature of 0–450 ℃, with the corresponding temperature sensitivity of 10 pm/℃, and the resolution of 0.1 ℃. The double clad FBG attached to the surface of the lithium battery shell can also monitor the bulge deformation on the surface of the battery shell, and its longitudinal pressure modification sensitivity is up to 142 pm/N. The temperature field monitoring system of quasi-distributed lithium battery pack based on double clad FBG in this paper can not only ensure high-precision temperature and deformation measurement, but also have good stability and anti-interference ability, which shows that the research work in this paper is expected to provide a reliable theoretical and experimental basis for the safety monitoring and use of lithium battery pack.
      通信作者: 郑加金, zhengjj@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075100)资助的课题.
      Corresponding author: Zheng Jia-Jin, zhengjj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075100).
    [1]

    黄彦瑜 2007 物理 36 643Google Scholar

    Huang Y Y 2007 Physics 36 643Google Scholar

    [2]

    Jun P, Shuhai J, Hongqiang Y, Xilong K, Shuming Y, Shouping X 2021 IEEE Sens. J. 21 4628Google Scholar

    [3]

    姜德生, 何伟 2002 光电子·激光 04 420Google Scholar

    Jiang D S, He W 2002 J. Optoelectron. Laser 04 420Google Scholar

    [4]

    Li B, Parekh M H, Adams R A, Adams T E, Love C T, Pol V G, Tomar V 2019 Sci. Rep. 9 1Google Scholar

    [5]

    余有龙, 谭华耀, 锺永康 2001 光学学报 21 987Google Scholar

    Yu Y L, Tan H Y, Zhong Y K 2001 Acta Opt. Sin. 21 987Google Scholar

    [6]

    Ee Y J, Tey K S, Lim K S, Shrivastava P, Adnan S, Ahmad H 2021 J. Energy Storage 40 102704Google Scholar

    [7]

    Nascimento M, Paixão T, Ferreira M S, Pinto J 2018 Batteries 4 67Google Scholar

    [8]

    Huang J Q, Blanquer L A, Bonefacino J, Logan E R, Dalla Corte D A, Charles D, Delacourt C, Gallant B M, Boles S T, Dahn J R, Tam H Y, Tarascon J M 2020 Nat. Energy 5 674Google Scholar

    [9]

    Andrey W G, David, Julian W, Helmar W, Christoph S, Gisela F, Gernot V, Alexander T, Viktor H 2014 RSC Adv. 4 3633Google Scholar

    [10]

    Rengaswamy S, Plamen A D, Bliss G C 2018 J. Power Sources 405 30Google Scholar

    [11]

    Shasha L, Tomas V, Alexandros V, Frans O, Yaolin X, Zhaolong L, Zhengcao L, Marnix W 2018 Nat. Commun. 9 1Google Scholar

    [12]

    曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009Google Scholar

    Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers 45 0702009Google Scholar

    [13]

    Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823Google Scholar

    [14]

    徐团伟, 李芳, 刘育梁 2012 光学学报 32 241Google Scholar

    Xu T W, Li F, Liu Y L 2012 Acta Opt. Sin. 32 241Google Scholar

    [15]

    Nazmi A M, Nermeen M O 2018 J. Comput. Electron. 17 349Google Scholar

  • 图 1  (a) 双包层光纤结构; (b) 封装FBG温度传感器; (c) 温度应变响应反射谱实时测试装置

    Fig. 1.  (a) Double clad fiber structure; (b) encapsulated FBG temperature sensor; (c) real-time measurement device of reflectance spectrum for temperature and strain response.

    图 2  (a) 锂电池组温度监测系统示意图; (b) 18650锂电池组双包层FBG布设示意图

    Fig. 2.  (a) Schematic diagram of lithium battery pack temperature monitoring system; (b) layout diagram of 18650 lithium battery pack double clad FBG.

    图 3  (a) 相同载氢和刻写条件单模和双包层FBG光谱; (b) 相同反射率单模与双包层FBG光谱

    Fig. 3.  (a) Single mode and double clad FBG spectra under the same hydrogen loading and writing conditions; (b) single mode and double clad FBG spectra with the same reflectivity.

    图 4  单模和双包层FBG不同温度下光谱图 (a) 单模FBG反射光谱演变; (b) 双包层FBG反射光谱演变; (c) FBG反射峰值强度随温度的变化; (d) 升温过程中FBG反射峰值强度随时间的变化; (e) 双包层FBG反射峰值强度在不同温度下随时间的变化; (f) FBG中心波长随温度变化

    Fig. 4.  Spectra of single-mode and double clad FBG at different temperatures: (a) Reflection spectrum variation of single mode FBG; (b) reflection spectrum variation of double clad FBG; (c) variation of FBG reflection peak intensity with temperature; (d) variation of FBG reflection peak intensity with time during heating; (e) variation of double clad FBG reflection peak intensity with time at different temperatures; (f) FBG center wavelength varies with temperature.

    图 5  (a) FBG中心波长实时监测; (b) FBG中心波长随压力变化; (c) FBG中心波长随位移变化

    Fig. 5.  (a) Real-time monitoring of FBG center wavelength; (b) FBG center wavelength varies with pressure; (c) FBG center wavelength varies with displacement.

    图 6  (a) 温度场监控系统1, 3号通道温度监测对比; (b) 通道4电池鼓包监测对比

    Fig. 6.  (a) Comparison of temperature monitoring of channels 1 and 3 of the temperature field monitoring system; (b) channel 4 battery bulge monitoring comparison.

    表 1  E型热电偶与双包层FBG温度测量结果对比

    Table 1.  Comparison of temperature measurement results between E-type thermocouple and double clad FBG.

    时间/
    min
    温度/℃
    热电偶FBG(1)热电偶FBG(2)热电偶FBG(3)
    020.820.720.820.720.820.7
    127.927.727.827.627.927.7
    234.734.534.934.834.834.7
    341.641.541.941.741.741.5
    448.948.849.048.848.848.7
    555.855.655.755.555.955.6
    6 62.6 62.4 62.8 62.7 63 62.7
    7 69.8 69.7 69.8 69.6 69.7 69.6
    8 76.7 76.5 76.9 76.8 76.8 76.6
    9 83.9 83.6 83.8 83.6 83.9 83.8
    10 90.8 90.6 91 90.7 91.1 91
    下载: 导出CSV

    表 2  双包层FBG监测18650锂电池模组反射谱中心波长随时间变化数据

    Table 2.  Double clad FBG monitoring 18650 lithium battery module reflectance spectrum center wavelength change data with time.

    时间/s10203040506070
    中心波长/nm通道1FBG111546.521546.551546.571546.591546.611546.621546.63
    FBG121549.341549.361549.381549.391549.421549.431549.45
    FBG131552.561552.571552.601552.611552.631552.641552.66
    FBG141555.471555.501555.511555.531555.551555.561555.59
    通道2FBG211546.541546.551546.571546.591546.61546.621546.64
    FBG221549.321549.341549.351549.381549.401549.421549.44
    FBG231552.491552.521552.551552.571552.581552.601552.63
    FBG241555.421555.431555.461555.481555.491555.511555.52
    通道3FBG311546.721546.861546.971547.251547.611548.111548.77
    FBG321549.531549.671549.791550.031550.381550.911551.54
    FBG331552.571552.591552.621552.641552.681552.71552.73
    FBG341555.451555.491555.531555.571555.601555.641555.67
    通道4FBG411546.531546.571546.591546.611546.621546.611546.59
    FBG421549.351549.371549.381549.411549.421549.441549.45
    FBG431552.551552.571552.681552.801553.011553.341553.69
    FBG441555.481555.531555.571555.591555.611555.581555.59
    下载: 导出CSV
  • [1]

    黄彦瑜 2007 物理 36 643Google Scholar

    Huang Y Y 2007 Physics 36 643Google Scholar

    [2]

    Jun P, Shuhai J, Hongqiang Y, Xilong K, Shuming Y, Shouping X 2021 IEEE Sens. J. 21 4628Google Scholar

    [3]

    姜德生, 何伟 2002 光电子·激光 04 420Google Scholar

    Jiang D S, He W 2002 J. Optoelectron. Laser 04 420Google Scholar

    [4]

    Li B, Parekh M H, Adams R A, Adams T E, Love C T, Pol V G, Tomar V 2019 Sci. Rep. 9 1Google Scholar

    [5]

    余有龙, 谭华耀, 锺永康 2001 光学学报 21 987Google Scholar

    Yu Y L, Tan H Y, Zhong Y K 2001 Acta Opt. Sin. 21 987Google Scholar

    [6]

    Ee Y J, Tey K S, Lim K S, Shrivastava P, Adnan S, Ahmad H 2021 J. Energy Storage 40 102704Google Scholar

    [7]

    Nascimento M, Paixão T, Ferreira M S, Pinto J 2018 Batteries 4 67Google Scholar

    [8]

    Huang J Q, Blanquer L A, Bonefacino J, Logan E R, Dalla Corte D A, Charles D, Delacourt C, Gallant B M, Boles S T, Dahn J R, Tam H Y, Tarascon J M 2020 Nat. Energy 5 674Google Scholar

    [9]

    Andrey W G, David, Julian W, Helmar W, Christoph S, Gisela F, Gernot V, Alexander T, Viktor H 2014 RSC Adv. 4 3633Google Scholar

    [10]

    Rengaswamy S, Plamen A D, Bliss G C 2018 J. Power Sources 405 30Google Scholar

    [11]

    Shasha L, Tomas V, Alexandros V, Frans O, Yaolin X, Zhaolong L, Zhengcao L, Marnix W 2018 Nat. Commun. 9 1Google Scholar

    [12]

    曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009Google Scholar

    Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers 45 0702009Google Scholar

    [13]

    Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823Google Scholar

    [14]

    徐团伟, 李芳, 刘育梁 2012 光学学报 32 241Google Scholar

    Xu T W, Li F, Liu Y L 2012 Acta Opt. Sin. 32 241Google Scholar

    [15]

    Nazmi A M, Nermeen M O 2018 J. Comput. Electron. 17 349Google Scholar

  • [1] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [2] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [3] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述. 物理学报, 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [4] 廖宇, 简小华, 崔崤峣, 张麒. 一种基于双波长的光声测温技术. 物理学报, 2017, 66(11): 117802. doi: 10.7498/aps.66.117802
    [5] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, 2014, 63(2): 024202. doi: 10.7498/aps.63.024202
    [6] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延. 高效率掺Tm3+双包层光纤及光纤激光器的研制. 物理学报, 2014, 63(1): 014209. doi: 10.7498/aps.63.014209
    [7] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, 2013, 62(2): 024209. doi: 10.7498/aps.62.024209
    [8] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究. 物理学报, 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [9] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [10] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [11] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, 2012, 61(16): 164203. doi: 10.7498/aps.61.164203
    [12] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [13] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究. 物理学报, 2012, 61(8): 084215. doi: 10.7498/aps.61.084215
    [14] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [15] 崔艳玲, 侯蓝田. 一种新型混合双包层光子晶体光纤的色散特性研究. 物理学报, 2010, 59(4): 2571-2576. doi: 10.7498/aps.59.2571
    [16] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [17] 刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌. 两路双包层光纤激光器互注入锁相实验研究. 物理学报, 2009, 58(6): 3929-3933. doi: 10.7498/aps.58.3929
    [18] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [19] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, 2008, 57(6): 3525-3530. doi: 10.7498/aps.57.3525
    [20] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器. 物理学报, 2004, 53(12): 4262-4267. doi: 10.7498/aps.53.4262
计量
  • 文章访问数:  3821
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-01-21
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-05-20

/

返回文章
返回