搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响

白成 吴用 辛雨慈 牟俊峰 江俊颖 丁鼎 夏雷 余鹏

引用本文:
Citation:

NaCu5S3复合NixFe-LDH的结构对水解氧析出性能的影响

白成, 吴用, 辛雨慈, 牟俊峰, 江俊颖, 丁鼎, 夏雷, 余鹏

Effect of NaCu5S3 composite NixFe-LDH structure on hydrolysis oxygen evolution performance

Bai Cheng, Wu Yong, Xin Yu-Ci, Mou Jun-Feng, Jiang Jun-Ying, Ding Ding, Xia Lei, Yu Peng
PDF
HTML
导出引用
  • 析氧反应 (OER) 在锌空气电池、燃料电池和电解水等能源储存和转换设备中都有至关重要的作用. 然而OER过程涉及四电子转移, 导致反应动力学缓慢. 尽管贵金属氧化物被认为是最先进的OER电催化剂, 但昂贵的价格以及稀缺性限制了其商业应用. 因此, 本工作结合水热和水浴法制备了NaCu5S3@NixFe-LDH (x = 1, 2, 3, 4) 纳米片阵列复合电催化剂. 对样品的结构进行了表征, 结果显示NaCu5S3和Ni2Fe-LDH充分混合, 形成紧密结合的界面, 有利于电荷的快速转移, 这将增强两相界面处的电子调控作用, 改变其局域结构特性, 促进OER电催化性能. 电化学测试结果显示, 当电流密度为20 mA·cm–2时, NaCu5S3@Ni2Fe-LDH在1.0 M KOH电解液中的氧析出过电位仅为227 mV, 电催化性能优于原始的NaCu5S3 (271 mV) 和Ni2Fe-LDH (275 mV), 并且具有长达72 h的稳定性. 此外, NaCu5S3@Ni2Fe-LDH复合电催化剂具有较小的电荷转移电阻, 较大的双层电容值 (10.0 mF·cm–2) 和电化学活性表面积 (250 cm2), 有利于OER的进行. 本工作为设计廉价、高效且稳定的OER复合电催化剂提供了切实可行的实践路径.
    The oxygen evolution reaction (OER) plays a critical role in energy storage and conversion devices such as zinc-air batteries, fuel cells, and electrolysis water. However, the OER process involves a four-electron transfer, leading to slow reaction kinetics. Therefore, it is necessary to explore an efficient, inexpensive, and durable electrocatalysts to accelerate the OER process. Noble metal oxides are considered the most advanced OER electrocatalysts, but their high price and scarcity limit their commercial applications. Thus, researchers have started exploring other low-cost materials as alternatives. Nanocomposite materials have emerged as a promising alternative to expensive and scarce noble metal oxide electrocatalysts for OER. Therefore, this work synthesizes novel nanocomposite materials, NaCu5S3@NixFe-LDH (x = 1, 2, 3, 4) nanosheet array via hydrothermal and water bath methods. The structure and morphology of each product are characterized, indicating a tightly integrated interface between NaCu5S3 and Ni2Fe-LDH, which facilitates rapid charge transfer and enhancement of electron regulation at the interface. This changes the local structure characteristics and promotes the OER catalytic performance. Electrochemical characterization results show that in a 1.0 M KOH electrolyte, the overpotential of NaCu5S3@Ni2Fe-LDH for OER at a current density of 20 mA/cm2 is only 227 mV, significantly lower than that of the original NaCu5S3 (271 mV) and Ni2Fe-LDH (275 mV), with stability duration reaching 72 h. Electrochemical results also reveal that with the increase of overpotential, NaCu5S3@Ni2Fe-LDH shows a significant oxidation peak between 1.35–1.45 (V vs. RHE), which leads to the activation of Ni2+ to Ni3+ high oxidation state. The high oxidation state of Ni will promote the OER. The NaCu5S3@Ni2Fe-LDH composite electrocatalyst exhibits lower charge transfer resistance, higher double layer capacitance value (10.0 mF/cm2), and electrochemical active surface area (250 cm2), which are also beneficial to promoting OER. This study highlights the potential of nanocomposite materials as cost-effective alternatives to noble metal oxide electrocatalysts for OER. The NaCu5S3@Ni2Fe-LDH composite electrocatalyst exhibits excellent OER performance with a low overpotential, high stability, and favorable electrochemical properties. This research provides a valuable insight into the design and development of efficient and sustainable electrocatalysts for energy conversion and storage applications.
      通信作者: 吴用, wy_yp@shu.edu.cn ; 余鹏, pengyu@cqnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52071043) 和重庆市教委科学技术研究重点项目(批准号: KJZD-K201900501) 资助的课题.
      Corresponding author: Wu Yong, wy_yp@shu.edu.cn ; Yu Peng, pengyu@cqnu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 52071043) and the Key Science and Technology Research Program Project of the Chongqing Education Commission of China (Grant No. KJZD-K201900501).
    [1]

    Zhang Z H, Wang C L, Ma X L, Liu F, Xiao H, Zhang J, Lin Z, Hao Z P 2021 Small 17 2103785Google Scholar

    [2]

    Zhao X H, Pattengale B, Fan D H, Zou Z H, Zhao Y Q, Du J, Huang J E, Xu C L 2018 ACS Energy Lett. 3 2520Google Scholar

    [3]

    Zhao X, Zheng X R, Lu Q, Li Y, Xiao F P, Tang B, Wang S X, Yu D Y W, Rogach A L 2023 EcoMat. 5 e12293Google Scholar

    [4]

    Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C 2020 J. Chem. Soc. Rev. 49 2196Google Scholar

    [5]

    Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B 2019 J. Am. Chem. Soc. 141 3014Google Scholar

    [6]

    孙涛, 袁健美 2023 物理学报 72 028901Google Scholar

    Sun T, Yuan J M 2023 Acta Phys. Sin. 72 028901Google Scholar

    [7]

    汤衍浩 2023 物理学报 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [8]

    She Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F 2017 Science 355 4998Google Scholar

    [9]

    Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y 2019 Adv. Mater. 31 1807134Google Scholar

    [10]

    Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M 2015 Chem. Rev. 115 11941Google Scholar

    [11]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52Google Scholar

    [12]

    李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友 2023 物理学报 72 029501Google Scholar

    Li Y P, Tang X Z, Chen X N, Gao C Y, Chen Y N, Fan C J, Lü J Y 2023 Acta Phys. Sin. 72 029501Google Scholar

    [13]

    Deng S J, Shen Y B, Xie D, Lu Y F, Yu X L, Yang L, Wang X L, Xia X H, Tu J P 2019 J. Energy Chem. 39 61Google Scholar

    [14]

    Liu G M, Schulmeyer T, Brötz J, Klein A, Jaegermann W 2003 Thin Solid Films 431 477Google Scholar

    [15]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [16]

    Zhao J, Zhang J J, Li Z Y, Bu X H 2020 Small 16 2003916Google Scholar

    [17]

    Lü L, Yang Z X, Chen K, Wang C D, Xiong Y J 2019 Adv. Energy Mater. 9 1803358Google Scholar

    [18]

    Huang Z N, Liao X P, Zhang W B, Hu J L, Gao Q S 2022 ACS Catal. 12 13951Google Scholar

    [19]

    Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q 2022 Chem. Engine. J. 433 133524Google Scholar

    [20]

    Song S Z, Mu L H, Jiang Y, Sun J, Zhang Y, Shi G S, Sun H N 2022 ACS Appl. Mater. Inter. 14 47560Google Scholar

    [21]

    Li D, Qin Y Y, Liu J, Zhao H Y, Sun Z J, Chen G B, Wu D Y, Su Y Q, Ding S J, Xiao C H V 2022 Adv. Funct. Mater. 32 2107056Google Scholar

    [22]

    Lv L, He X B, Wang J S, Ruan Y J, Yang S X, Yuan H, Zhang T R 2021 Appl. Catal. B 298 120531Google Scholar

    [23]

    Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F 2019 Small Methods 3 1800449Google Scholar

    [24]

    Du C F, Dinh K N, Liang Q H, Zheng Y, Luo Y B, Zhang J L, Yan Q Y 2018 Adv. Energy Mater. 8 1801127Google Scholar

    [25]

    Dinh K N, Sun Y X, Pei Z X, Yuan Z W, Suwardi A, Huang Q W, Liao X Z, Wang Z G, Chen Y, Yan Q Y 2020 Small 16 1905885Google Scholar

    [26]

    Liu M J, Min K A, Han B C, Lee L Y S 2021 Adv. Energy Mater. 11 2101281Google Scholar

    [27]

    Li A, Zhang Z, Feng J, Lü F, Li Y, Wang R, Lu M, Gupta R B, Xi P, Zhang S 2018 J. Am. Chem. Soc. 140 17624Google Scholar

    [28]

    Xie Q X, Ren D, Bai L C, Ge R L, Zhou W H, Bai L, Xie W, Wang J H, Grätzel M, Luo J S 2023 Chin. J. Catalysis 44 127Google Scholar

    [29]

    Li S, Chen B B, Wang Y, Ye M Y, Aken P A V, Cheng C, Thomas A 2021 Nat. Mater. 20 1240Google Scholar

    [30]

    Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X, Fransaer J 2019 Adv. Funct. Mater. 29 1900315Google Scholar

    [31]

    Bai Y K, Wu Y, Zhou X C, Ye Y F, Nie K Q, Wang J, Xie M, Zhang Z X, Liu Z J, Cheng T, Gao C B 2022 Nat. Commun. 13 6094Google Scholar

    [32]

    Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q 2023 Nano-Micro Lett. 15 30Google Scholar

    [33]

    Chakraborty B, Kalra S, Beltrán-Suito R, Das C, Hellmann T, Menezes W P, Driess M 2020 Chem. Asian J. 15 852Google Scholar

    [34]

    Liang H J, Shuang W, Zhang Y T, Chao S J, Han H J, Wang X B, Zhang H, Yang L 2018 Chem. Electro. Chem. 5 494Google Scholar

    [35]

    Li Y M, Zhang X Y, Zhuo S Y, Liu S L, Han A X, Li L G, Tian Y 2021 Appl. Surf. Sci. 555 149441Google Scholar

    [36]

    He L B, Zhou D, Lin Y, Ge R X, Hou X D, Sun X P, Zheng C B 2018 ACS Catal. 8 3859Google Scholar

    [37]

    Chinnadurai D, Rajendiran R, Kandasamy P 2022 J. Colloid Inter. Sci. 606 101Google Scholar

    [38]

    Tan L, Yu J T, Wang C, Wang H F, Liu X, Gao H T, Xin L T, Liu D Z, Hou W G, Zhan T R 2022 Adv. Funct. Mater. 32 2200951

    [39]

    Sun S, Zhou X, Cong B, Hong W, Chen G 2020 ACS Catal. 10 9086Google Scholar

    [40]

    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L 2016 Angew. Chem. Int. Ed. 55 6702Google Scholar

    [41]

    Zhao Z L, Wu H X, He H L, Xu X L, Jin Y D 2014 Adv. Funct. Mater. 24 4698Google Scholar

    [42]

    Li Y, Chen G, Zhu Y, Hu Z, Chan T, She S, Dai J, Zhou W, Shao Z 2021 Adv. Funct. Mater. 31 2103569Google Scholar

  • 图 1  NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH和NaCu5S3@Ni4Fe-LDH 的XRD衍射谱图

    Fig. 1.  XRD patterns of the NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH and NaCu5S3@Ni4Fe-LDH.

    图 2  (a)—(e) NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH和NaCu5S3@Ni4Fe-LDH的SEM图像; (f)—(i) NaCu5S3和NaCu5S3@Ni2Fe-LDH的TEM和HRTEM图像; (j), (k) NaCu5S3和NaCu5S3@Ni2Fe-LDH的EDS能谱图

    Fig. 2.  (a)–(e) SEM image of the NaCu5S3, NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH and NaCu5S3@Ni4Fe-LDH; (f)–(i) TEM and HRTEM images of the NaCu5S3 and NaCu5S3@Ni2Fe-LDH; (j), (k) EDS images for the NaCu5S3 and NaCu5S3@Ni2Fe-LDH.

    图 3  (a)—(c) NaCu5S3和NaCu5S3@Ni2Fe-LDH Na 1s, Cu 2p和S 2p XPS能谱; (d), (e) NaCu5S3@Ni2Fe-LDH Ni 2p和Fe 2p XPS能谱; (f) NaCu5S3和NaCu5S3@Ni2Fe-LDH XPS能谱

    Fig. 3.  (a)–(c) Na 1s, Cu 2p and S 2p XPS spectra of NaCu5S3 and NaCu5S3@Ni2Fe-LDH; (d), (e) Ni 2p and Fe 2p XPS spectra of the NaCu5S3@Ni2Fe-LDH; (f) XPS spectra of NaCu5S3 and NaCu5S3@Ni2Fe-LDH.

    图 4  NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH, NaCu5S3@Ni4Fe-LDH, NaCu5S3和Ni2Fe-LDH (a) LSV极化曲线; (b) Tafel斜率; (c) EIS; (d) Cdl; (e) ECSA; (f) NaCu5S3@Ni2Fe-LDH CP曲线

    Fig. 4.  NaCu5S3@NiFe-LDH, NaCu5S3@Ni2Fe-LDH, NaCu5S3@Ni3Fe-LDH, NaCu5S3@Ni4Fe-LDH, NaCu5S3 and Ni2Fe-LDH: (a) LSV polarization curves; (b) Tafel slope; (c) EIS; (d) Cdl; (e) ECSA; (f) CP curve of NaCu5S3@Ni2Fe-LDH.

    图 5  (a)—(c) NaCu5S3 OER前后的Na 1s, Cu 2p和S 2p XPS能谱; (d)—(h) NaCu5S3@Ni2Fe-LDH OER前后的Na 1s, Cu 2p, S 2p, Ni 2p和Fe 2p XPS能谱

    Fig. 5.  (a)–(c) Na 1s, Cu 2p and S 2p XPS spectra of the NaCu5S3 before and after OER; (d)–(h) Na 1s, Cu 2p, S 2p, Ni 2p and Fe 2p XPS spectra of the NaCu5S3@Ni2Fe-LDH before and after OER.

    表 1  1 M KOH电解液中催化剂的OER活性比较

    Table 1.  Comparison of OER activity of catalysts in 1 M KOH electrolytes.

    CatalystElectrolyteOverpotential/mVCurrent density
    /(mA·cm–2)
    Ref.
    NaCu5S3@NiFe-LDH1 M KOH25420This work
    NaCu5S3@Ni2Fe-LDH1 M KOH22720This work
    NaCu5S3@Ni3Fe-LDH1 M KOH24820This work
    NaCu5S3@Ni4Fe-LDH1 M KOH25920This work
    NaCu5S31 M KOH27120This work
    Cu9S5/NF1 M KOH29810[33]
    CuS-FSM1 M KOH40810[34]
    CoO@Cu2S1 M KOH27710[35]
    Cu2S/CF1 M KOH33620[36]
    CuNiS1 M KOH33710[37]
    Cu-NiS21 M KOH23210[25]
    Cu2S/TiO2/Cu2S1 M KOH28410[13]
    下载: 导出CSV
  • [1]

    Zhang Z H, Wang C L, Ma X L, Liu F, Xiao H, Zhang J, Lin Z, Hao Z P 2021 Small 17 2103785Google Scholar

    [2]

    Zhao X H, Pattengale B, Fan D H, Zou Z H, Zhao Y Q, Du J, Huang J E, Xu C L 2018 ACS Energy Lett. 3 2520Google Scholar

    [3]

    Zhao X, Zheng X R, Lu Q, Li Y, Xiao F P, Tang B, Wang S X, Yu D Y W, Rogach A L 2023 EcoMat. 5 e12293Google Scholar

    [4]

    Song J J, Wei C, Huang Z F, Liu C T, Zeng L, Wang X, Xu Z C 2020 J. Chem. Soc. Rev. 49 2196Google Scholar

    [5]

    Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B 2019 J. Am. Chem. Soc. 141 3014Google Scholar

    [6]

    孙涛, 袁健美 2023 物理学报 72 028901Google Scholar

    Sun T, Yuan J M 2023 Acta Phys. Sin. 72 028901Google Scholar

    [7]

    汤衍浩 2023 物理学报 72 027802Google Scholar

    Tang Y H 2023 Acta Phys. Sin. 72 027802Google Scholar

    [8]

    She Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F 2017 Science 355 4998Google Scholar

    [9]

    Guo Y N, Park T, Yi J W, Henzie J, Kim J, Wang Z L, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y 2019 Adv. Mater. 31 1807134Google Scholar

    [10]

    Chia X, Eng A Y S, Ambrosi A, Tan S M, Pumera M 2015 Chem. Rev. 115 11941Google Scholar

    [11]

    Zheng Y, Jiao Y, Jaroniec M, Qiao S Z 2015 Angew. Chem. Int. Ed. 54 52Google Scholar

    [12]

    李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友 2023 物理学报 72 029501Google Scholar

    Li Y P, Tang X Z, Chen X N, Gao C Y, Chen Y N, Fan C J, Lü J Y 2023 Acta Phys. Sin. 72 029501Google Scholar

    [13]

    Deng S J, Shen Y B, Xie D, Lu Y F, Yu X L, Yang L, Wang X L, Xia X H, Tu J P 2019 J. Energy Chem. 39 61Google Scholar

    [14]

    Liu G M, Schulmeyer T, Brötz J, Klein A, Jaegermann W 2003 Thin Solid Films 431 477Google Scholar

    [15]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [16]

    Zhao J, Zhang J J, Li Z Y, Bu X H 2020 Small 16 2003916Google Scholar

    [17]

    Lü L, Yang Z X, Chen K, Wang C D, Xiong Y J 2019 Adv. Energy Mater. 9 1803358Google Scholar

    [18]

    Huang Z N, Liao X P, Zhang W B, Hu J L, Gao Q S 2022 ACS Catal. 12 13951Google Scholar

    [19]

    Lin X J, Cao S F, Chen H Y, Chen X D, Wang Z J, Zhou S N, Xu H, Liu S Y, Wei S X, Lu X Q 2022 Chem. Engine. J. 433 133524Google Scholar

    [20]

    Song S Z, Mu L H, Jiang Y, Sun J, Zhang Y, Shi G S, Sun H N 2022 ACS Appl. Mater. Inter. 14 47560Google Scholar

    [21]

    Li D, Qin Y Y, Liu J, Zhao H Y, Sun Z J, Chen G B, Wu D Y, Su Y Q, Ding S J, Xiao C H V 2022 Adv. Funct. Mater. 32 2107056Google Scholar

    [22]

    Lv L, He X B, Wang J S, Ruan Y J, Yang S X, Yuan H, Zhang T R 2021 Appl. Catal. B 298 120531Google Scholar

    [23]

    Gu Z X, Yang N, Han P, Kuang M, Mei B B, Jiang Z, Zhong J, Li L, Zheng G F 2019 Small Methods 3 1800449Google Scholar

    [24]

    Du C F, Dinh K N, Liang Q H, Zheng Y, Luo Y B, Zhang J L, Yan Q Y 2018 Adv. Energy Mater. 8 1801127Google Scholar

    [25]

    Dinh K N, Sun Y X, Pei Z X, Yuan Z W, Suwardi A, Huang Q W, Liao X Z, Wang Z G, Chen Y, Yan Q Y 2020 Small 16 1905885Google Scholar

    [26]

    Liu M J, Min K A, Han B C, Lee L Y S 2021 Adv. Energy Mater. 11 2101281Google Scholar

    [27]

    Li A, Zhang Z, Feng J, Lü F, Li Y, Wang R, Lu M, Gupta R B, Xi P, Zhang S 2018 J. Am. Chem. Soc. 140 17624Google Scholar

    [28]

    Xie Q X, Ren D, Bai L C, Ge R L, Zhou W H, Bai L, Xie W, Wang J H, Grätzel M, Luo J S 2023 Chin. J. Catalysis 44 127Google Scholar

    [29]

    Li S, Chen B B, Wang Y, Ye M Y, Aken P A V, Cheng C, Thomas A 2021 Nat. Mater. 20 1240Google Scholar

    [30]

    Wan K, Luo J S, Zhou C, Zhang T, Arbiol J, Lu X H, Mao B W, Zhang X, Fransaer J 2019 Adv. Funct. Mater. 29 1900315Google Scholar

    [31]

    Bai Y K, Wu Y, Zhou X C, Ye Y F, Nie K Q, Wang J, Xie M, Zhang Z X, Liu Z J, Cheng T, Gao C B 2022 Nat. Commun. 13 6094Google Scholar

    [32]

    Zhu J L, Qian J M, Peng X B, Xia B R, Gao D Q 2023 Nano-Micro Lett. 15 30Google Scholar

    [33]

    Chakraborty B, Kalra S, Beltrán-Suito R, Das C, Hellmann T, Menezes W P, Driess M 2020 Chem. Asian J. 15 852Google Scholar

    [34]

    Liang H J, Shuang W, Zhang Y T, Chao S J, Han H J, Wang X B, Zhang H, Yang L 2018 Chem. Electro. Chem. 5 494Google Scholar

    [35]

    Li Y M, Zhang X Y, Zhuo S Y, Liu S L, Han A X, Li L G, Tian Y 2021 Appl. Surf. Sci. 555 149441Google Scholar

    [36]

    He L B, Zhou D, Lin Y, Ge R X, Hou X D, Sun X P, Zheng C B 2018 ACS Catal. 8 3859Google Scholar

    [37]

    Chinnadurai D, Rajendiran R, Kandasamy P 2022 J. Colloid Inter. Sci. 606 101Google Scholar

    [38]

    Tan L, Yu J T, Wang C, Wang H F, Liu X, Gao H T, Xin L T, Liu D Z, Hou W G, Zhan T R 2022 Adv. Funct. Mater. 32 2200951

    [39]

    Sun S, Zhou X, Cong B, Hong W, Chen G 2020 ACS Catal. 10 9086Google Scholar

    [40]

    Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L 2016 Angew. Chem. Int. Ed. 55 6702Google Scholar

    [41]

    Zhao Z L, Wu H X, He H L, Xu X L, Jin Y D 2014 Adv. Funct. Mater. 24 4698Google Scholar

    [42]

    Li Y, Chen G, Zhu Y, Hu Z, Chan T, She S, Dai J, Zhou W, Shao Z 2021 Adv. Funct. Mater. 31 2103569Google Scholar

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [3] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 71(17): 177101. doi: 10.7498/aps.71.20220601
    [4] 张凤, 廉森, 王明月, 陈雪, 殷继康, 何磊, 潘华卿, 任俊峰, 陈美娜. 掺杂、应变对析氢反应催化剂NiP2性能的影响. 物理学报, 2021, 70(14): 148802. doi: 10.7498/aps.70.20210298
    [5] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [6] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能. 物理学报, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [7] 徐克欣, 夏田雨, 周亮, 李顺方, 蔡彬, 王荣明, 郭海中. 链状Pt-Ni纳米颗粒的制备、表征及高效电催化性能. 物理学报, 2020, 69(7): 076101. doi: 10.7498/aps.69.20200343
    [8] 李壮, 底兰波, 于锋, 张秀玲. 冷等离子体强化制备金属催化剂研究进展. 物理学报, 2018, 67(21): 215202. doi: 10.7498/aps.67.20181451
    [9] 晋中华, 刘伯飞, 梁俊辉, 王宁, 张奇星, 刘彩池, 赵颖, 张晓丹. 室温合成非晶三硫化钼析氢催化剂的性能调制以及其在串联制氢器件中的应用. 物理学报, 2016, 65(11): 118801. doi: 10.7498/aps.65.118801
    [10] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [11] 杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞. AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质. 物理学报, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [12] 陈钊, 丁竑瑞, 陈伟华, 李艳, 张国义, 鲁安怀, 胡晓东. 太阳能电池在微生物燃料电池中的光电催化性能研究. 物理学报, 2012, 61(24): 248801. doi: 10.7498/aps.61.248801
    [13] 叶佳宇, 刘亚丽, 王靖林, 何垚. Zr催化剂对NaAlH4和Na3AlH6可逆储氢性能的影响. 物理学报, 2010, 59(6): 4178-4185. doi: 10.7498/aps.59.4178
    [14] 张国英, 杨丽娜, 张辉, 吴建军. 铂族及过渡金属对Ti合金钝化影响机理研究. 物理学报, 2010, 59(3): 2022-2026. doi: 10.7498/aps.59.2022
    [15] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [16] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [17] 牛志强, 方 炎. 催化剂组分对制备单壁碳纳米管的影响. 物理学报, 2007, 56(3): 1796-1801. doi: 10.7498/aps.56.1796
    [18] 李振华, 王琴妹, 王 淼. 金属铈催化剂对单壁纳米碳管生长和结构的影响. 物理学报, 2005, 54(5): 2158-2161. doi: 10.7498/aps.54.2158
    [19] 张红瑞, 郭新勇, 丁 佩, 杜祖亮, 梁二军. 不同催化剂热解法制备硼碳氮纳米管过程中的影响. 物理学报, 2003, 52(7): 1808-1811. doi: 10.7498/aps.52.1808
    [20] 张涛, 康敏成, 路文昌. 杂质对担载式催化剂化学吸附的影响. 物理学报, 1990, 39(12): 2025-2028. doi: 10.7498/aps.39.2025
计量
  • 文章访问数:  2299
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-03-12
  • 上网日期:  2023-03-24
  • 刊出日期:  2023-05-20

/

返回文章
返回