搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制

邱橙 陈泳屹 高峰 秦莉 王立军

引用本文:
Citation:

一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制

邱橙, 陈泳屹, 高峰, 秦莉, 王立军

Design of a multimode interference waveguide semiconductor laser combining gain coupled distributed feedback grating

Qiu Cheng, Chen Yong-Yi, Gao Feng, Qin Li, Wang Li-Jun
PDF
HTML
导出引用
  • 半导体激光器是现代通讯领域的核心器件. 研究和开发具有高稳定性、高功率、高光束质量、窄线宽的单模半导体激光器是目前半导体激光器研究领域的一个重要的研究方向. 本文在窄脊型边发射半导体激光器的结构基础上, 提出并研制了一种在980 nm波段附近的利用有源多模干涉波导结构作为激光器的主要增益区, 利用增益耦合式分布反馈光栅对激光器的纵向模式进行调制的新型边发射半导体激光器芯片结构. 通过对比实验可以看出, 这种激光器相较于一般的分布反馈式半导体激光器, 其具有更高的斜率效率和输出功率; 而相较于一般的多模干涉波导激光器, 这种激光器具有更高的光束质量和更好的稳定性. 同时, 由于在芯片设计和制造过程中采用了表面刻蚀形成的高阶分布反馈光栅, 这种激光芯片的制造无需二次外延, 只需要微米量级精度的i线光刻即可实现, 是一种制备工艺较为简单、制造成本较低、利于商用量产的芯片结构.
    Semiconductor laser is one of the most critical components in the field of modern communication. Research and development of single-mode semiconductor laser with high stability, high power, high beam quality and narrow line width is an important research area in this field. In this paper, A novel edge-emitting semiconductor laser diode structure is proposed. In the structure an active multimode interference waveguide structure serves as a main gain region. To modulate the longitudinal mode of the laser, a gain-coupled distributed feedback(DFB) laser based on high order surface gain coupled grating is introduced into the structure as well. The novel structure is then fabricated and compared with an conventional DFB laser. The experimental results show that higher slope efficiency and output power are achieved with the proposed structure than those with the conventional distributed feedback semiconductor lasers. The novel structure is also compared with conventional MMI laser with only Fabry-Parot(FP) cavity. The result shows that the proposed structure has higher beam quality and better stability than the FP cavity multimode interference waveguide lasers. To enhance the gain contrast in the quantum wells without introducing the effective index-coupled effect, the groove length and depth are well designed. Our device provides a single longitudinal mode with the maximum CW output power up to 53.8 mW/facet at 981.21 nm and 400 mA without facet coating, 3 dB linewidth < 13.6 pm, and SMSR > 32 dB. Optical bistable characteristic is observed with a threshold current difference. Meanwhile, by using high-order distribution feedback grating formed by shallow surface etching in the process of chip design and fabrication, the proposed structure of laser diode can realize regrowth freely and only micron-scale precision i-line lithography is required. Such a structure with simple fabrication process and low manufacturing cost has great potential for commercial mass production.
      通信作者: 邱橙, qiucheng_hahaha@163.com
    • 基金项目: 国家自然科学基金(批准号: 51672264, 11874353, 61727822, 61674148)资助的课题.
      Corresponding author: Qiu Cheng, qiucheng_hahaha@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672264, 11874353, 61727822, 61674148).
    [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344

    [3]

    Dieckmann A 1994 Electron. Lett. 30 308Google Scholar

    [4]

    Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar

    [5]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [6]

    Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar

    [7]

    Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar

    [8]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344

    [9]

    Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar

    [10]

    Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar

    [11]

    Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar

    [12]

    Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683

    [13]

    Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar

    [14]

    Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar

    [15]

    Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar

    [16]

    Guo R J et al. 2016 IEEE Photon. J. 81 503007

    [17]

    Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar

    [18]

    Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar

    [19]

    Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar

    [20]

    Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399

    [21]

    Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27

    [22]

    Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413

    [23]

    Gao F et al. 2018 Opt. Comm. 410 936Google Scholar

    [24]

    Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar

  • 图 1  结合了增益耦合式DFB光栅的有源MMI激光芯片的结构示意图

    Fig. 1.  Schematic of an active MMI laser chip with gain coupled DFB grating.

    图 2  增益耦合式DFB有源波导结构的示意图[23]

    Fig. 2.  Schematic of gain coupled DFB active waveguide structure[23].

    图 3  增益耦合式DFB光栅的刻蚀深度与耦合系数κ的关系[23]

    Fig. 3.  Relationship between groove depth and couple coefficient of gain coupled DFB grating[23].

    图 4  利用COMSOL Multiphysics仿真的的光束传播的光场分布状态[23] (a)绝缘槽深度600 nm; (b)绝缘槽深度1200 nm

    Fig. 4.  Light field distribution of beam propagation simulated by COMSOL Multiphysic[23]: (a) Insulation groove depth 600 nm; (b) insulation groove depth 1200 nm.

    图 5  利用PICS 3D仿真的一个周期内的载流子分布情况

    Fig. 5.  Simulation results of carrier distribution in one period using PICS 3D.

    图 6  量子阱上载流子浓度在两个光栅周期内的分布情况

    Fig. 6.  Distribution of carrier concentration on quantum well in two grating period.

    图 7  不同隔离槽深度量子阱上载流子浓度在两个光栅周期内的分布情况[23]

    Fig. 7.  Distribution of carrier concentration on quantum well in two grating periods with different isolation groove depth[23].

    图 8  利用MODE Solution软件仿真的1X1的MMI结构内的光场分布

    Fig. 8.  Simulation results of light field distribution in 1X1 MMI structure using MODE Solution software.

    图 9  利用COMSOL MultiPhysics仿真的脊型波导内的二维光场模式分布

    Fig. 9.  2D optical field mode distribution of ridge waveguide structure using Comsol Multiphysics.

    图 10  DFB增益耦合光栅部分的制备工艺流程

    Fig. 10.  Schematic processing flow of gain coupled DFB laser diode.

    图 11  (a) DFB增益耦合光栅的俯视扫描电镜图像; (b) DFB增益耦合光栅的纵向截面扫描电镜图像; (c) 经过C-mount封装的增益耦合式DFB光栅MMI激光器的照片

    Fig. 11.  (a) Overlooking SEM image of gain coupled DFB grating; (b) SEM image of longitude cross-section view of gain coupled DFB grating; (c) photo image of C-mounted MMI plus DFB laser diode.

    图 12  DFB + MMI激光器结构在连续电流工作状态下的功率-电流输出特性

    Fig. 12.  P-I output characterization curve of MMI plus DFB laser diode under the condition of continuous current operation.

    图 13  FP腔的MMI激光器(a), 窄脊型DFB激光器(b)和MMI + DFB激光器(c)的光谱图

    Fig. 13.  Measured spectrum of MMI with FP cavity laser (a), Stripe DFB laser (b) and MMI plus DFB laser (c).

    图 14  FP腔的MMI激光器(a), 窄脊型DFB激光器(b)和MMI + DFB激光器的远场分布(c)

    Fig. 14.  Measured far field intensity of MMI with FP cavity laser (a), stripe DFB laser (b) and (c) MMI plus DFB laser.

  • [1]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar

    [2]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344

    [3]

    Dieckmann A 1994 Electron. Lett. 30 308Google Scholar

    [4]

    Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar

    [5]

    Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar

    [6]

    Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar

    [7]

    Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar

    [8]

    Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344

    [9]

    Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar

    [10]

    Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar

    [11]

    Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar

    [12]

    Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683

    [13]

    Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar

    [14]

    Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar

    [15]

    Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar

    [16]

    Guo R J et al. 2016 IEEE Photon. J. 81 503007

    [17]

    Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar

    [18]

    Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar

    [19]

    Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar

    [20]

    Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399

    [21]

    Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27

    [22]

    Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413

    [23]

    Gao F et al. 2018 Opt. Comm. 410 936Google Scholar

    [24]

    Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar

  • [1] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [2] 杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响. 物理学报, 2015, 64(8): 084204. doi: 10.7498/aps.64.084204
    [3] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [4] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [5] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [6] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法. 物理学报, 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [7] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [8] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [9] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [10] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [11] 颜森林. 延时反馈半导体激光器双劈控制混沌方法研究. 物理学报, 2008, 57(5): 2827-2831. doi: 10.7498/aps.57.2827
    [12] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究. 物理学报, 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [13] 贾新鸿, 钟东洲, 王 飞, 陈海涛. 基于λ/4相移分布反馈半导体激光器四波混频的THz波长转换特性研究. 物理学报, 2007, 56(5): 2637-2646. doi: 10.7498/aps.56.2637
    [14] 张玉驰, 王晓勇, 李 刚, 王军民, 张天才. 自由运转半导体激光器边模间的强度关联. 物理学报, 2007, 56(4): 2202-2206. doi: 10.7498/aps.56.2202
    [15] 刘 崇, 葛剑虹, 陈 军. 外腔反馈对半导体激光器振荡特性的影响. 物理学报, 2006, 55(10): 5211-5215. doi: 10.7498/aps.55.5211
    [16] 黄良玉, 罗晓曙, 方锦清, 赵益波, 唐国宁. 用滑模变结构控制方法实现外腔反馈式半导体激光器的混沌控制. 物理学报, 2005, 54(2): 543-549. doi: 10.7498/aps.54.543
    [17] 廉 鹏, 殷 涛, 高 国, 邹德恕, 陈昌华, 李建军, 沈光地, 马骁宇, 陈良惠. 新型多有源区隧道再生光耦合大功率半导体激光器. 物理学报, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
    [18] 王晓辉, 陈徐宗, 侯继东, 杨东海, 王义遒. 用于激光冷却的半导体激光器大频差边模注入锁定的理论及实验研究. 物理学报, 2000, 49(1): 85-93. doi: 10.7498/aps.49.85
    [19] 郭长志, 陈水莲. 分布反射面发射垂直微腔半导体激光器的微腔效应. 物理学报, 1997, 46(9): 1731-1743. doi: 10.7498/aps.46.1731
    [20] 张建平, 李玲, 叶培大. 电负反馈半导体激光器半经典理论. 物理学报, 1989, 38(9): 1436-1442. doi: 10.7498/aps.38.1436
计量
  • 文章访问数:  11373
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-05-29
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回