搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构

付强 王聪 王语菲 常正实

引用本文:
Citation:

正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构

付强, 王聪, 王语菲, 常正实

Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure

Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi
PDF
HTML
导出引用
  • 火星大气富含CO2(~95%), 对其原位利用具有重要的科学和经济价值. 高压放电转化CO2具有绿色环保、可控程度高、使用寿命长等优势, 在火星CO2资源原位转化利用方面具有应用潜力. 本文模拟火星低气压条件下CO2氛围, 针对kHz交流电压驱动两种典型电极结构(有/无阻挡介质)的放电特性开展对比实验研究, 并辅以数值仿真分析两种电极结构下CO2放电产物及其转化途径. 结果表明, 引入阻挡介质后, 由于介质表面累积电荷和空间电荷畸变电场导致放电从半周期单次放电转变为多脉冲放电, 不同放电脉冲对应的放电通道随机产生. 主要放电产物中, CO依赖阴极位降区边界处电子与CO2附着分解反应产生, O2大部分产生于瞬时阳极表面或瞬时阳极侧介质表面电子与CO${}^+_2 $复合分解反应. 进一步发现, 介质引入不改变二者产生位置和主导反应路径, 但会降低阴极位降区边界处电子密度和电子温度, 使CO产量有所减少; 并降低放电功率, 使到达瞬时阳极表面和瞬时阳极侧介质表面的CO${}^+_2 $产额不足, 生成O2减少.
    The low-pressure atmosphere rich in CO2 (~95%) on Mars makes the in-situ resource utilization of Martian CO2 and the improvement of oxidation attract widespread attention. It contributes to constructing the Mars base which will support the deep space exploration. Conversion of CO2 based on high voltage discharge has the advantages of environmental friendliness, high efficiency and long service life. It has application potential in the in-situ conversion and utilization of Martian CO2 resources. We simulate the CO2 atmosphere of Mars where the pressure is fixed at 1 kPa and the temperature is maintained at room temperature. A comparative study is carried out on the discharge characteristics of two typical electrode structures (with/without barrier dielectric) driven by 20 kHz AC voltage. Combined with numerical simulations, the CO2 discharge characteristics, products and their conversion pathways are analyzed. The results show that the discharge mode changes from single discharge during each half cycle into multi discharge pulses after adding the barrier dielectric. Each discharge pulse of the multi pulses corresponds to a random discharge channel, which is induced by the distorted electric field of accumulated charge on the dielectric surface and the space charge. The accumulated charge on the dielectric surface promotes the primary discharge and inhibits the secondary discharge. Space charge will be conducive to the occurrence of secondary discharge. The main products in discharge process include ${\rm{CO}}^+_2 $, CO, O2, C, and O. Among the products, CO is produced mainly by the attachment decomposition reaction between energetic electrons and CO2 at the boundary of cathode falling zone, and the contribution rate of the reaction can reach about 95%. The O2 is generated mainly by the compound decomposition reaction between electrons and ${\rm{CO}}^+_2 $ near the instantaneous anode surface or instantaneous anode side dielectric surface, and the contribution rate of the reaction can reach about 98%. It is further found that the dielectric does not change the generation position nor dominant reaction pathway of the two main products, but will reduce the electron density from 5.6×1016 m−3 to 0.9×1016 m−3 and electron temperature from 17.2 eV to 11.7 eV at the boundary of the cathode falling region, resulting in the reduction of CO production. At the same time, the deposited power is reduced, resulting in insufficient $ {\rm{CO}}^+_2 $ yield near the instantaneous anode surface and instantaneous anode side dielectric surface and further the decrease of O2 generation.
      通信作者: 常正实, changzhsh1984@163.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: xzy012021014)、北京卫星环境工程研究所创新基金(批准号: CAST-BISEE2019-021)和北京宇航系统工程研究所创新基金(批准号: CALTJS2017-0031)资助的课题.
      Corresponding author: Chang Zheng-Shi, changzhsh1984@163.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xzy012021014), the Beijing Institute of Spacecraft Environment Engineering Innovation Fund, China (Grant No. CAST-BISEE2019-021), and the Beijing Institute of Aerospace Systems Engineering Innovation Fund, China (Grant No. CALTJS2017-0031).
    [1]

    Mahaffy P R, Webster C R, Atreya S K, et al. 2013 Science 341 263Google Scholar

    [2]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [3]

    欧阳自远, 肖福根 2012 航天器环境工程 29 591Google Scholar

    Ouyang Z Y, Xiao F G 2012 Spacecraft Environment Engineering 29 591Google Scholar

    [4]

    Ashford B, Tu X 2017 Curr. Opin. Green Sustain. Chem. 3 45Google Scholar

    [5]

    Wang W, Wang S, Ma X, Gong J 2011 Chem. Soc. Rev. 40 3703Google Scholar

    [6]

    Ganesh I 2014 Renew. Sust. Energ. Rev. 31 221Google Scholar

    [7]

    Ganesh I 2016 Renew. Sust. Energ. Rev. 59 1269Google Scholar

    [8]

    Wendt G L, Farnsworth M 1925 J. Am. Chem. Soc. 47 2494Google Scholar

    [9]

    Mei D, He Y, Liu S, Yan J, Tu X 2016 Plasma Process. Polym. 13 544Google Scholar

    [10]

    Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A 2016 Energ. Environ. Sci. 9 999Google Scholar

    [11]

    Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y 2019 J. Phys. D Appl. Phys. 52 224003Google Scholar

    [12]

    Kozak T, Bogaerts A 2015 Plasma Sources Sci. T. 24 015024Google Scholar

    [13]

    Silva T, Britun N, Godfroid T, Snyders R 2014 Plasma Sources Sci. T. 23 025009Google Scholar

    [14]

    Spencer L F, Gallimore A D 2013 Plasma Sources Sci. T. 22 015019Google Scholar

    [15]

    Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A 2016 Plasma Sources Sci. T. 25 065012Google Scholar

    [16]

    张凯, 张帅, 高远, 孙昊, 严萍, 邵涛 2019 高电压技术 45 1396

    Zhang K, Zhang S, Gao Y, Sun H, Yan P, Shao T 2019 High Voltage Engineering 45 1396

    [17]

    Chen Q, Sun J, Zhang X 2018 Chinese J. Chem. Eng. 26 1041Google Scholar

    [18]

    Ponduri S, Becker M M, Welzel S, van de Sanden M C M, Loffhagen D, Engeln R 2016 J. Appl. Phys. 119 093301Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C. 116 23257Google Scholar

    [20]

    Capitelli M, Celiberto R, Colonna G, et al. 2011 Plasma Phys. Contr. F. 53 124007Google Scholar

    [21]

    Pietanza L D, Colonna G, D'Ammando G, Capitelli M 2017 Plasma Phys. Contr. F. 59 014035Google Scholar

    [22]

    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 025013Google Scholar

    [23]

    Brehmer F, Welzel S, van de Sanden M C M, Engeln R 2014 J. Appl. Phys. 116 123303Google Scholar

    [24]

    Ozkan A, Dufour T, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 045016Google Scholar

    [25]

    Gruenwald J 2016 Acta Astronaut. 123 188Google Scholar

    [26]

    Guerra V, Silva T, Ogloblina P, et al. 2017 Plasma Sources Sci. T. 26 11LT01Google Scholar

    [27]

    Ogloblina P, Morillo-Candas A S, Silva A F, et al. 2021 Plasma Sources Sci. T. 30 065005Google Scholar

    [28]

    Zhang B, Zhang X 2020 J. Appl. Phys. 128 083302Google Scholar

    [29]

    Wang C, Fu Q, Chang Z, Zhang G 2021 Plasma Process. Polym. 18 e2000228Google Scholar

    [30]

    Wang C, Yao C, Chang Z, Zhang G 2019 Phys. Plasmas 26 123506Google Scholar

    [31]

    Kozak T, Bogaerts A 2014 Plasma Sources Sci. T. 23 045004Google Scholar

    [32]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [33]

    Land J E 1978 J. Appl. Phys. 49 5716Google Scholar

    [34]

    Lawton S A, Phelps A V 1978 J. Chem. Phys. 69 1055Google Scholar

    [35]

    Hokazono H, Fujimoto H 1987 J. Appl. Phys. 62 1585Google Scholar

    [36]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 36 4997Google Scholar

    [37]

    Cenian A, Chernukho A, Borodin V, Sliwinski G 1994 Contrib. Plasm. Phys. 34 25Google Scholar

    [38]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [39]

    Cenian A, Chernukho A, Borodin V 1995 Contrib. Plasm. Phys. 35 273Google Scholar

    [40]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. T. 16 399Google Scholar

    [41]

    Woodall J, Agundez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197Google Scholar

    [42]

    Hadjziane S, Held B, Pignolet P, Peyrous R, Coste C 1992 J. Phys. D Appl. Phys. 25 677Google Scholar

    [43]

    Blauer J A, Nickerson G R 1974 AIAA 7th Fluid and Plasma Dynamics Conference Pal0 Alto, California, June 17–19, 1974 p536

    [44]

    Poncin-Epaillard F, Aouinti M 2002 Plasmas Polym. 7 1Google Scholar

    [45]

    Khan M I, Rehman N U, Khan S, Ullah N, Masood A, Ullah A 2019 AIP Adv. 9 085015Google Scholar

    [46]

    谢维杰 2008 博士学位论文 (上海: 上海交通大学)

    Xie W J 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong Universitty) (in Chinese)

    [47]

    Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Appl. Energ. 243 132Google Scholar

    [48]

    Liu Z, Huang B, Zhu W, Zhang C, Tu X, Shao T 2020 Plasma Chem. Plasma P. 40 937Google Scholar

  • 图 1  平行板电极实验装置图 (a) 裸电极型; (b) DBD型

    Fig. 1.  Diagram of parallel plate electrode: (a) Bare copper electrode; (b) copper electrode with dielectric barrier.

    图 2  CO2放电转化特性检测平台

    Fig. 2.  Platform of CO2 discharge characteristic detection.

    图 3  4 mm间隙不同电极结构CO2放电电流波形 (a) 裸电极结构; (b) DBD结构

    Fig. 3.  CO2 discharge current waveforms with different electrode structures when d = 4 mm: (a) Bare copper electrode; (b) copper electrode with dielectric barrier.

    图 4  DBD不同放电电流脉冲的放电图像

    Fig. 4.  Discharge images of different current pulses in DBD.

    图 5  DBD放电参数分布

    Fig. 5.  Distribution of discharge parameters in DBD.

    图 6  270—620 nm发射光谱

    Fig. 6.  Optical emission spectra ranging from 270 to 620 nm

    图 7  270—570 nm裸电极与DBD发射光谱对比

    Fig. 7.  Comparison of discharge optical spectra between copper electrode and DBD structure: 270–570 nm.

    图 8  750—900 nm裸电极与DBD发射光谱对比:

    Fig. 8.  Comparison of discharge optical spectra between copper electrode and DBD structure: 750–900 nm.

    图 9  模型中CO和O2不同产生路径的贡献 (a) CO; (b) O2

    Fig. 9.  Contribution of different production paths of CO and O2 in model: (a) CO; (b) O2.

    图 10  反应路径E9和E23在稳定周期下的反应速率

    Fig. 10.  Reaction rate of path E9 and E23 at stable period.

    图 C1  270—620 nm发射光谱

    Fig. C1.  Optical spectra ranging from 270 to 620 nm.

    图 C2  750—900 nm发射光谱

    Fig. C2.  Optical spectra ranging from 750 to 900 nm.

    图 C3  200—280 nm裸电极发射光谱

    Fig. C3.  Emission spectrum of bare copper electrode: 200–280 nm.

    图 D1  4 mm间隙裸电极放电峰值时刻ne, ni, ETe分布 (a) 正放电; (b)负放电

    Fig. D1.  Distribution of ne, ni, E and Te at the peak time of discharge current of bare electrode when d = 4 mm: (a) Positive discharge; (b) negative discharge.

    图 D2  4 mm间隙DBD正放电放电峰值时刻ne, ni, ETe分布 (a)第1个脉冲; (b)第2个脉冲

    Fig. D2.  Distribution of ne, ni, E and Te at the peak time of positive discharge current of DBD when d = 4 mm: (a) First pulse; (b) second pulse.

    表 1  模型中包括的粒子

    Table 1.  Types of particles included in the model.

    中性粒子CO2, CO, O, C, O2
    离子CO${}^+_2 $, O, O${}^+_2 $, O${}^-_2 $, CO${}^-_3 $
    激发态粒子CO2e, CO2v1, CO2v2, CO2v3, CO2v4
    下载: 导出CSV

    表 2  模型中考虑的振动态

    Table 2.  Vibrational particles considered in the model.

    基态模型中的符号对应振动态
    CO2CO2v1(010)
    CO2v2(100), (020)
    CO2v3(001)
    CO2v4(n00), (0n0)
    下载: 导出CSV

    表 3  模型中裸电极与DBD放电参数和产物对比

    Table 3.  Comparison of discharge parameters and products in model: bare copper electrode & DBD.

    放电参数和产物裸电极DBD
    功率/W1.00.06
    电子密度/m–31.1 × 10163.6 × 1015
    振动态密度和/m–31.0 × 10213.1 × 1019
    CO密度/m–32.2 × 10177.0 × 1015
    O2密度/m–38.8 × 10162.7 × 1015
    O密度/m–34.2 × 10161.5 × 1015
    C密度/m–33.5 × 10156.3 × 1014
    下载: 导出CSV

    表 B2  模型中的电子附着反应和电子-离子复合反应

    Table B2.  Electron attachment reactions and electron-ion recombination reactions in the model.

    序号反应速率系数参考文献
    E22e + CO${}_2^+ $ → CO + O2.0 × 10–11Te–0.5/Tg[35]
    E23e + CO${}_2^+ $ → C + O23.94 × 10–13Te–0.4[36]
    E24e + O${}_2^+ $ → O + O6.0 × 10–13Te–0.5Tg–0.5[35]
    E25e + O2 + M → M + O${}_2^- $3.0 × 10–42 (M = CO2)[37]
    2.0 × 10–42 (M = CO, O2)
    E26e + O + M → M + O1.0 × 10–43[37]
    E27e + O${}_2^+ $ + M → M + O21.0 × 10–38[31, 38]
    下载: 导出CSV

    表 B3  模型中的离子-中性粒子反应和离子-离子反应

    Table B3.  Ion-neutral particle reactions and ion-ion reactions in the model.

    序号反应速率系数参考文献
    I1O + CO2 +M→ CO${}_3^- $ + M9.0 × 10–41 (M = CO2)[35, 39]
    3.0 × 10–40 (M = CO, O2)
    I2O + CO → CO2 + e5.5 × 10–16[36]
    I3CO${}_3^- $ + CO → CO2 + CO2 + e5.0 × 10–19[35]
    I4O + M → O + M + e4.0 × 10–18[39]
    I5O + O → O2 + e2.3 × 10–16[40]
    I6O${}_2^- $ + CO${}_2^+ $ → CO + O2 + O6.0 × 10–13[35]
    I7O + CO${}_2^+ $ → CO + O${}_2^+ $1.64 × 10–16[31, 41]
    I8O2 + CO${}_2^+ $ → CO2 + O${}_2^+ $5.3 × 10–17[31, 41]
    I9CO${}_3^- $ + CO${}_2^+ $ → CO2 + CO2 + O5.0 × 10–13[35]
    I10CO${}_3^- $ + O${}_2^+ $ → CO2 + O2 + O3.0 × 10–13[35]
    I11CO${}_3^- $ + O → CO2 + O${}_2^- $8.0 × 10–17[35]
    I12O${}_2^- $ + O${}_2^+ $ → O2 + O22.0 × 10–13[40]
    I13O${}_2^- $ + O${}_2^+ $ → O + O + O24.2 × 10–13[35]
    I14O${}_2^- $ + O${}_2^+ $ + M → O2 + O2 + M2.0 × 10–37[38]
    I15O + O${}_2^+ $ → O + O21.0 × 10–13[35]
    I16O + O${}_2^+ $ → O + O + O2.6 × 10–14[40]
    I17O${}_2^- $ + O → O + O23.3 × 10–16[38]
    I18O${}_2^- $ + O2 → O2 + O2 +e2.18 × 10–24[38]
    I19O${}_2^- $ +M → O2 + M +e2.7 × 10–16(Tg/300)0.5exp(–5590/Tg)[36]
    下载: 导出CSV

    表 B4  模型中中性粒子之间的反应

    Table B4.  Reactions between neutral particles in the model.

    序号反应速率系数α参考文献
    N1CO2 +M → CO + O + M3.91 × 10–16exp(–49430/Tg)0.8[31]
    N2CO2 + O → CO + O22.8 × 10–17exp(–26500/Tg)0.5[31, 36]
    N3CO2 + C→ CO + CO1.0 × 10–21[39]
    N4O + CO +M → CO2 + M1.6 × 10–45exp(–1510/Tg) (M=CO2)[37]
    8.2 × 10–46exp(–1510/Tg) (M=CO, O2)
    N5O + C +M → CO + M2.14 × 10–41(Tg/300)–3.08exp(–2114/Tg)[36]
    N6O + O +M → O2 + M1.27 × 10–44(Tg/300)–1exp(–170/Tg)[42]
    N7O2 + CO → CO2 + O4.2 × 10–18exp(–24000/Tg)[36]
    N8O2 + C → CO + O3.0 × 10–17[37]
    下载: 导出CSV

    表 B5  模型中的振动能量传递反应

    Table B5.  Vibration energy transfer reactions in the model.

    序号反应速率系数参考文献
    V1CO2v1 + CO2 → CO2 + CO27.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V2CO2v1 + CO → CO + CO20.7 × 7.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V3CO2v1 + O2 → O2 + CO20.7 × 7.14 × 10–14exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V4CO2v2 + CO2 → CO2 + CO21.071 × 10–15exp(–137 Tg–1/3)[43]
    V5CO2v2 + CO → CO + CO23.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V6CO2v2 + O2 → O2 + CO23.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V7CO2v2 + CO2 → CO2 + CO2v11.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V8CO2v2 + CO → CO + CO2v10.7 × 1.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V9CO2v2 + O2 → O2 + CO2v10.7 × 1.942 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V10CO2v3 + CO2 → CO2 + CO2v28.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V11CO2v3 + CO → CO + CO2v20.3 × 8.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V12CO2v3 + O2 → O2 + CO2v20.4 × 8.57 × 10–7exp(–404 Tg–1/3+1096 Tg–2/3)[43]
    V13CO2v3 + CO2 → CO2 + CO2v41.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V14CO2v3 + CO → CO + CO2v40.3 × 1.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V15CO2v3 + O2 → O2 + CO2v40.4 × 1.431 × 10–11exp(–252 Tg–1/3+685 Tg–2/3)[43]
    V16CO2v3 + CO2 → CO2v1 + CO2v21.06 × 10–11exp(–242 Tg–1/3+633 Tg–2/3)[43]
    V17CO2v3 + CO2 → CO2 + CO2v14.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V18CO2v3 + CO → CO + CO2v10.3 × 4.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V19CO2v3 + O2 → O2 + CO2v10.4 × 4.25 × 10–7exp(–407 Tg–1/3+824 Tg–2/3)[43]
    V20CO2v4 + CO2 → CO2 + CO2v22.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V21CO2v4 + CO → CO + CO2v20.7 × 2.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V22CO2v4 + O2 → O2 + CO2v20.7 × 2.897 × 10–13exp(–177 Tg–1/3+451 Tg–2/3)[43]
    V23CO2v4 + CO2 → CO2 + CO2v11.071 × 10–15exp(–137 Tg–1/3)[43]
    V24CO2v4 + CO → CO + CO2v13.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    V25CO2v4 + O2 → O2 + CO2v13.1 × 1.071 × 10–15exp(–137 Tg–1/3)[43]
    下载: 导出CSV

    表 B1  模型中的电子碰撞反应

    Table B1.  Electron impact reactions in the model.

    序号反应速率系数参考文献
    E1e + CO2 → e + CO2f (σ)[32]
    E2e + CO2vi → e + CO2vif (σ)[32]
    E3e + CO2 → 2e + CO${}_2^+ $f (σ)[32]
    E4e + CO2vi → 2e + CO${}_2^+ $f (σ)[32]
    E5e + CO2 → e + CO2ef (σ)[32]
    E6e + CO2vi → e + CO2ef (σ)[32]
    E7e + CO2 → e + O + COf (σ)[32]
    E8e + CO2vi → e + O + COf (σ)[32]
    E9e + CO2 → O + COf (σ)[32]
    E10e + CO2vi → O + COf (σ)[32]
    E11e + CO2 → e + CO2v1f (σ)[32]
    E12e + CO2 → e + CO2v2f (σ)[32]
    E13e + CO2 → e + CO2v3f (σ)[32]
    E14e + CO2 → e + CO2v4f (σ)[32]
    E15e + CO → e + COf (σ)[33]
    E16e + CO → e + C + Of (σ)[33]
    E17e + CO → C + Of (σ)[33]
    E18e + O2 → e + O2f (σ)[34]
    E19e + O2 → e + O + Of (σ)[34]
    E20e + O2 → O + Of (σ)[34]
    E21e + O2 → 2e + O${}_2^+ $f (σ)[34]
    下载: 导出CSV

    表 C3  CO(A1Π→X1Σ)第四正带系的光谱参数

    Table C3.  Spectral parameters of the fourth positive band system of CO(A1Π→X1Σ).

    波长/nm振动能级(ν'→ν'')Δν
    200.51→87
    208.95→127
    221.63→129
    224.78→168
    228.66→159
    235.65→1510
    下载: 导出CSV

    表 C4  CO+(B2Σ+→X2Σ+)第一负带系的光谱参数

    Table C4.  Spectral parameters of the first negative band system of CO+(B2Σ+→X2Σ+).

    波长/nm振动能级(ν'→ν'')Δν
    244.51→32
    247.42→42
    253.04→62
    257.71→43
    下载: 导出CSV

    表 C1  CO(b3Σ→a3Π)第三正带系的光谱参数

    Table C1.  Spectral parameters of the third positive band system of CO(b3Σ→a3Π).

    波长/nm振动能级(ν'→ν'')Δν
    2830→00
    2970→11
    3130→22
    下载: 导出CSV

    表 C2  CO(B1Σ→A1Π)Angstrom系的光谱参数

    Table C2.  Spectral parameters of the Angstrom system of CO(B1Σ→A1Π).

    波长/nm振动能级(ν'→ν'')Δν
    4510→00
    4830→11
    5200→22
    5610→33
    6080→44
    下载: 导出CSV
  • [1]

    Mahaffy P R, Webster C R, Atreya S K, et al. 2013 Science 341 263Google Scholar

    [2]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [3]

    欧阳自远, 肖福根 2012 航天器环境工程 29 591Google Scholar

    Ouyang Z Y, Xiao F G 2012 Spacecraft Environment Engineering 29 591Google Scholar

    [4]

    Ashford B, Tu X 2017 Curr. Opin. Green Sustain. Chem. 3 45Google Scholar

    [5]

    Wang W, Wang S, Ma X, Gong J 2011 Chem. Soc. Rev. 40 3703Google Scholar

    [6]

    Ganesh I 2014 Renew. Sust. Energ. Rev. 31 221Google Scholar

    [7]

    Ganesh I 2016 Renew. Sust. Energ. Rev. 59 1269Google Scholar

    [8]

    Wendt G L, Farnsworth M 1925 J. Am. Chem. Soc. 47 2494Google Scholar

    [9]

    Mei D, He Y, Liu S, Yan J, Tu X 2016 Plasma Process. Polym. 13 544Google Scholar

    [10]

    Snoeckx R, Heijkers S, Van Wesenbeeck K, Lenaerts S, Bogaerts A 2016 Energ. Environ. Sci. 9 999Google Scholar

    [11]

    Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y 2019 J. Phys. D Appl. Phys. 52 224003Google Scholar

    [12]

    Kozak T, Bogaerts A 2015 Plasma Sources Sci. T. 24 015024Google Scholar

    [13]

    Silva T, Britun N, Godfroid T, Snyders R 2014 Plasma Sources Sci. T. 23 025009Google Scholar

    [14]

    Spencer L F, Gallimore A D 2013 Plasma Sources Sci. T. 22 015019Google Scholar

    [15]

    Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A 2016 Plasma Sources Sci. T. 25 065012Google Scholar

    [16]

    张凯, 张帅, 高远, 孙昊, 严萍, 邵涛 2019 高电压技术 45 1396

    Zhang K, Zhang S, Gao Y, Sun H, Yan P, Shao T 2019 High Voltage Engineering 45 1396

    [17]

    Chen Q, Sun J, Zhang X 2018 Chinese J. Chem. Eng. 26 1041Google Scholar

    [18]

    Ponduri S, Becker M M, Welzel S, van de Sanden M C M, Loffhagen D, Engeln R 2016 J. Appl. Phys. 119 093301Google Scholar

    [19]

    Aerts R, Martens T, Bogaerts A 2012 J. Phys. Chem. C. 116 23257Google Scholar

    [20]

    Capitelli M, Celiberto R, Colonna G, et al. 2011 Plasma Phys. Contr. F. 53 124007Google Scholar

    [21]

    Pietanza L D, Colonna G, D'Ammando G, Capitelli M 2017 Plasma Phys. Contr. F. 59 014035Google Scholar

    [22]

    Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 025013Google Scholar

    [23]

    Brehmer F, Welzel S, van de Sanden M C M, Engeln R 2014 J. Appl. Phys. 116 123303Google Scholar

    [24]

    Ozkan A, Dufour T, Bogaerts A, Reniers F 2016 Plasma Sources Sci. T. 25 045016Google Scholar

    [25]

    Gruenwald J 2016 Acta Astronaut. 123 188Google Scholar

    [26]

    Guerra V, Silva T, Ogloblina P, et al. 2017 Plasma Sources Sci. T. 26 11LT01Google Scholar

    [27]

    Ogloblina P, Morillo-Candas A S, Silva A F, et al. 2021 Plasma Sources Sci. T. 30 065005Google Scholar

    [28]

    Zhang B, Zhang X 2020 J. Appl. Phys. 128 083302Google Scholar

    [29]

    Wang C, Fu Q, Chang Z, Zhang G 2021 Plasma Process. Polym. 18 e2000228Google Scholar

    [30]

    Wang C, Yao C, Chang Z, Zhang G 2019 Phys. Plasmas 26 123506Google Scholar

    [31]

    Kozak T, Bogaerts A 2014 Plasma Sources Sci. T. 23 045004Google Scholar

    [32]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [33]

    Land J E 1978 J. Appl. Phys. 49 5716Google Scholar

    [34]

    Lawton S A, Phelps A V 1978 J. Chem. Phys. 69 1055Google Scholar

    [35]

    Hokazono H, Fujimoto H 1987 J. Appl. Phys. 62 1585Google Scholar

    [36]

    Beuthe T G, Chang J S 1997 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 36 4997Google Scholar

    [37]

    Cenian A, Chernukho A, Borodin V, Sliwinski G 1994 Contrib. Plasm. Phys. 34 25Google Scholar

    [38]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [39]

    Cenian A, Chernukho A, Borodin V 1995 Contrib. Plasm. Phys. 35 273Google Scholar

    [40]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. T. 16 399Google Scholar

    [41]

    Woodall J, Agundez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197Google Scholar

    [42]

    Hadjziane S, Held B, Pignolet P, Peyrous R, Coste C 1992 J. Phys. D Appl. Phys. 25 677Google Scholar

    [43]

    Blauer J A, Nickerson G R 1974 AIAA 7th Fluid and Plasma Dynamics Conference Pal0 Alto, California, June 17–19, 1974 p536

    [44]

    Poncin-Epaillard F, Aouinti M 2002 Plasmas Polym. 7 1Google Scholar

    [45]

    Khan M I, Rehman N U, Khan S, Ullah N, Masood A, Ullah A 2019 AIP Adv. 9 085015Google Scholar

    [46]

    谢维杰 2008 博士学位论文 (上海: 上海交通大学)

    Xie W J 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong Universitty) (in Chinese)

    [47]

    Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T 2019 Appl. Energ. 243 132Google Scholar

    [48]

    Liu Z, Huang B, Zhu W, Zhang C, Tu X, Shao T 2020 Plasma Chem. Plasma P. 40 937Google Scholar

  • [1] 刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强. 基于光谱诊断的沿面介质阻挡放电产物变化的物理-化学机理. 物理学报, 2023, 72(5): 055201. doi: 10.7498/aps.72.20222236
    [2] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [3] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [4] 张泰恒, 王绪成, 张远涛. 火星大气条件下基态CO2放电简化集合. 物理学报, 2021, 70(21): 215201. doi: 10.7498/aps.70.20210664
    [5] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [7] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪. 较大体积的大气压空气介质阻挡放电特性研究. 物理学报, 2013, 62(16): 165205. doi: 10.7498/aps.62.165205
    [8] 石磊, 钱沐杨, 肖坤祥, 黎明. 低气压条件下氢气潘宁放电的模拟分析. 物理学报, 2013, 62(17): 175205. doi: 10.7498/aps.62.175205
    [9] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [10] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [11] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [12] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究. 物理学报, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [13] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [14] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究. 物理学报, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [15] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [17] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [18] 刘达伟. 高气压快放电XeCl准分子激光器的放电特性. 物理学报, 1984, 33(11): 1512-1519. doi: 10.7498/aps.33.1512
    [19] 高智, 林烈, 孙文超. 横流放电CO2激光的理论分析. 物理学报, 1979, 28(6): 807-823. doi: 10.7498/aps.28.807
    [20] 林光海. 对流放电CO2激光器的饱和特性. 物理学报, 1978, 27(4): 396-412. doi: 10.7498/aps.27.396
计量
  • 文章访问数:  3923
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-02-14
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回