搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展

崔文文 邢笑伟 肖悦嘉 刘文军

引用本文:
Citation:

高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展

崔文文, 邢笑伟, 肖悦嘉, 刘文军

Research progress of mode-locked pulsed fiber lasers with high damage threshold saturable absorber

Cui Wen-Wen, Xing Xiao-Wei, Xiao Yue-Jia, Liu Wen-Jun
PDF
HTML
导出引用
  • 光纤激光器作为推动各领域发展的基础硬件, 在轨道交通、光纤通信、新材料制造、动力电池加工、军事国防和医疗等领域都有广泛的应用价值. 光纤激光器被动锁模技术的核心器件是可饱和吸收体, 它对光纤激光器实现高能量、窄脉宽、大功率的激光输出起决定性作用. 依托传统材料和传统结构的可饱和吸收体, 由于无散热机制, 光作用到材料上的光斑大小与光纤出射直径几乎相同, 容易超过可饱和吸收体的损伤阈值从而造成损坏. 因此, 调整可饱和吸收体制备工艺和结构, 对于提高可饱和吸收体的损伤阈值, 实现性能优良、稳定性高的脉冲激光具有重要意义. 本文综述了高损伤阈值可饱和吸收体国内外研究现状, 指出了高损伤阈值可饱和吸收体可能的发展方向.
    As the basic hardware to promote the development of various fields, fiber laser has great development potential in rail transit, optical communication, new material manufacturing, power battery processing, military defense, medical treatment, and other fields. As the core device of passively mode-locked fiber laser, a high damage threshold saturable absorber plays a decisive role in achieving high power, ultrashort pulse duration, and high energy laser output for a fiber laser. For saturable absorbers of traditional materials and structures, the spot size of light acting on the material is almost the same as the exit diameter of the optical fiber, which is easy to exceed the damage threshold of the saturable absorber and lead to damage. To improve the damage threshold of saturable absorbers, the structure of saturable absorbers based on both real materials and traditional saturable absorbers can be optimized. On the one hand, the preparation technology of the saturable absorber is adjusted, such as using the sol-gel method, which has a good effect on improving the damage threshold of the saturable absorber. Moreover, different materials are selected and used as substrates, such as the use of inorganic materials as material substrates and the selection of a variety of insertion cavity structures, such as “sandwich” transmission structures, tapered fibers, and photonic crystal fibers. These methods are of great significance in improving the damage threshold of the real material saturable absorber and realizing pulsed laser with excellent performance and high stability. On the other hand, the equivalent saturable absorber structure is used to improve the damage threshold and optimize the laser performance, such as hybrid mode-locked structure and nonlinear multimode interference. The continuous optimization of the fiber laser damage threshold will further expand its application range. Therefore, it is important to adjust the preparation process and insert the cavity structure of saturable absorbers for improving the damage threshold of the saturable absorber and achieving high performance and stability of the pulsed laser. This paper reviews the research status of high damage threshold saturable absorbers at home and abroad, summarizes the latest methods to improve material damage threshold and the latest research progress of equivalent saturable absorbers, and also points out the future development direction of high damage threshold saturable absorbers.
      通信作者: 刘文军, jungliu@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875008, 12075034)资助的课题
      Corresponding author: Liu Wen-Jun, jungliu@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875008, 12075034).
    [1]

    Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar

    [2]

    Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar

    [3]

    Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar

    [4]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [5]

    Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 物理学报 70 034206Google Scholar

    Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar

    [8]

    Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar

    [9]

    Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar

    [10]

    Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar

    [11]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [12]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [13]

    Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [15]

    Delhaes P 2002 Carbon 40 641Google Scholar

    [16]

    Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar

    [17]

    Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar

    [18]

    Arthur J R 1980 At & T Tech. J. 10 157Google Scholar

    [19]

    Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar

    [20]

    Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar

    [21]

    Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar

    [22]

    Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar

    [23]

    Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar

    [24]

    Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar

    [25]

    Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar

    [26]

    Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar

    [27]

    Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar

    [28]

    Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar

    [29]

    Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar

    [30]

    Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar

    [31]

    Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar

    [32]

    Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159

    [33]

    Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar

    [34]

    Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar

    [35]

    Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar

    [36]

    Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar

    [37]

    Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar

    [38]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [39]

    Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar

    [40]

    Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar

    [41]

    Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766

    [42]

    Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar

    [43]

    Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401

    [44]

    Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar

    [45]

    Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar

    [46]

    Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar

    [47]

    Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar

    [48]

    Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar

    [49]

    Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar

    [50]

    Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar

    [51]

    Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar

    [52]

    Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar

    [53]

    Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar

    [54]

    Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar

    [55]

    Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar

    [56]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [57]

    Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar

    [58]

    Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar

    [59]

    Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar

    [60]

    Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar

    [61]

    Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar

    [62]

    Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar

    [63]

    Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar

    [64]

    Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar

  • 图 1  HfO2薄膜的损伤点深度图 (a) 353 K, 39.2 J/cm2; (b) 423 K, 38.6 J/cm2; (c) 503 K, 36.6 J/cm2; (d) 573 K, 31.7 J/cm2[26]

    Fig. 1.  Damage spot depth map of the HfO2 films: (a) 353 K, 39.2 J/cm2; (b) 423 K, 38.6 J/cm2; (c) 503 K, 36.6 J/cm2; (d) 573 K, 31.7 J/cm2[26].

    图 2  不同SA插入结构的环形腔示意图

    Fig. 2.  Schematic diagram of annular cavity with different saturable absorber insertion structures.

    图 3  NPE锁模偏振态示意图

    Fig. 3.  Schematic diagram of nonlinear polarization evolution mode-locked polarization state.

    图 4  拉锥光纤WS2 SA被动锁模掺铒光纤激光器的实验结果 (a)脉冲光谱, 中心波长1540 nm的3 dB带宽为114 nm; (b)脉冲宽度为67 fs[48]

    Fig. 4.  Experimental results of the passively mode-locked EDF laser with the fiber-taper WS2 SA: (a) Optical spectrum of the generated pulses. The 3 dB spectral width is 114 nm at 1540 nm. (b) Intensity autocorrelation trace with 67 fs pulse duration[48].

    图 5  混合锁模结构示意图

    Fig. 5.  Schematic diagram of hybrid mode locking structure.

    图 6  NOLM可饱和吸收原理图

    Fig. 6.  Schematic diagram of nonlinear optical loop mirror saturable absorption.

    图 7  非线性多模干涉可饱和吸收原理图

    Fig. 7.  Schematic diagram of saturable absorption of nonlinear multimode interference.

  • [1]

    Wang X Z, Wang Z H, Wang Y Y, Zhang X, Song J J, Wei Z Y 2021 Chin. Phys. Lett. 38 074202Google Scholar

    [2]

    Jiang J W, Fang S B, Zhang Z Y, Zhu J F, Han H N, Chang G Q, Wei Z Y 2020 Chin. Phys. Lett. 37 054201Google Scholar

    [3]

    Ning F J, Li Z Y, Tan R Q, Hu L M, Liu S Y 2020 Chin. Phys. Lett. 37 034203Google Scholar

    [4]

    Xing Z Q, Zhou Y J, Liu Y H, Wang F 2020 Chin. Phys. Lett. 37 027302Google Scholar

    [5]

    Ni X, Jia K P, Wang X H, et al. 2021 Chin. Phys. Lett. 38 064201Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    王井上, 张瑶, 王军利, 魏志义, 常国庆 2021 物理学报 70 034206Google Scholar

    Wang J S, Zhang Y, Wang J L,Wei Z Y, Chang G Q 2021 Acta Phys. Sin. 70 034206Google Scholar

    [8]

    Lv R C, Teng H, Song J J, Kang R Z, Zhu J F, Wei Z Y 2021 Chin. Phys. B 30 094206Google Scholar

    [9]

    Fermann M E, Hofer M, Haberl F, Craig-Ryan S P 1990 Electron. Lett. 26 1737Google Scholar

    [10]

    Keller U, Knox W H, Roskos H 1990 Springer Berlin Heidelberg 53 69Google Scholar

    [11]

    俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴 2020 物理学报 69 184208Google Scholar

    Yu Q, Guo K, Chen J, Wang T, Wang J, Shi X Y, Wu J, Zhang K, Zhou P 2020 Acta Phys. Sin. 69 184208Google Scholar

    [12]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [13]

    Valdmanis J A, Fork R L 1986 IEEE J. Quantum Electron. 22 112Google Scholar

    [14]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [15]

    Delhaes P 2002 Carbon 40 641Google Scholar

    [16]

    Ji D X, Cai S H, Paudel T R, et al. 2019 Nature 570 87Google Scholar

    [17]

    Cicily Rigi V J, Jayaraj M K, Saji K J 2020 Appl. Surf. Sci. 529 147158Google Scholar

    [18]

    Arthur J R 1980 At & T Tech. J. 10 157Google Scholar

    [19]

    Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M, Wei Z Y 2018 Photonics Res. 6 220Google Scholar

    [20]

    Chen Z, Wang H, Wang Y, Lv R, Yang X, Wang J, Li L, Ren W 2019 Carbon 144 737Google Scholar

    [21]

    Chen Z, Wang Y, Lv R, Liu S, Wang Y 2020 Opt. Fiber Technol. 58 102189Google Scholar

    [22]

    Liu S C, Lv R D, Wang Y G, Shang S G, Ren W, Xu Q 2021 J. Mater. Chem. C 9 9021Google Scholar

    [23]

    Li L, Jiang S Z, Wang Y G, Wang X, Duan L N, Mao D, Li Z, Man B Y, Si J H 2015 Opt. Express 23 28698Google Scholar

    [24]

    Liu S, Wang Y, Lv R, Wang J, Duan L 2020 Nanophotonics 9 2523Google Scholar

    [25]

    Zhang Z F, Li S, Li Y, Kou Y, Liu K, Lin Y Y, Yuan L, Xu Y T, Peng Q J, Xu Z Y 2020 Chin. Phys. Lett. 37 064203Google Scholar

    [26]

    Zhang M, Zhu Y, Li D, Feng P, Xu C 2021 Appl. Surf. Sci. 554 149615Google Scholar

    [27]

    Liu H H, Yang Y, Chow K K 2013 Opt. Express 21 18975Google Scholar

    [28]

    Han X, Zhang H, Jiang S, Zhang C, Li D, Guo Q, Gao J, Man B 2019 Nanomaterials 9 1216Google Scholar

    [29]

    Ma P, Lin W, Zhang H, Xu S, Yang Z 2019 IEEE Photonics J. 11 1Google Scholar

    [30]

    Wang Y, Song C, Zhang H, Jin L, Xu Y, Ma X, Zou Y 2022 Opt. Laser Technol. 145 107542Google Scholar

    [31]

    Salam S, Nizamani B, Yasin M, Harun S W 2021 Results Opt. 2 100036Google Scholar

    [32]

    Wu Q, Jin X, Chen S, Jiang X, Hu Y, Jiang Q, Wu L, Li J, Zheng Z, Zhang M, Zhang H 2019 Opt. Express 27 10159

    [33]

    Song Y W, Yamashita S, Maruyama S 2008 Appl. Phys. Lett. 92 137Google Scholar

    [34]

    Nizamani B, Salam S, Jafry A A A, et al. 2020 Chin. Phys. Lett. 37 054202Google Scholar

    [35]

    Liu S, Shang S, Lv R, Wang Y, Wang J, Ren W, Wang Y 2021 ACS Appl. Mater. Interfaces 13 19128Google Scholar

    [36]

    Michaille L F, Taylor D M, Bennett C, Shepherd T J, Jacobsen C, Hansen T P 2004 Physica A 5618 30Google Scholar

    [37]

    Fermann M E, Andrejco M J, Silberberg Y, Stock M L 1993 Opt. Lett. 18 894Google Scholar

    [38]

    Doran N J, Wood D 1988 Opt. Lett. 13 56Google Scholar

    [39]

    Qi Y, Liu M, Luan N, Yang S, Bai Z, Yan B, Lu Z 2022 Infrared Phys. Technol. 121 104017Google Scholar

    [40]

    Zhao L M, Lu C, Tam H Y, Wai P, Tang D Y 2009 Appl. Opt. 48 5131Google Scholar

    [41]

    Wang Y Z, Zhang L Q, Zhuo Z, Guo S Z 2016 Appl. Opt. 55 5766

    [42]

    Szczepanek J, Karda’s T M, Radzewicz C, Stepanenko Y 2017 Opt. Lett. 42 575Google Scholar

    [43]

    Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J, Zhang H 2020 Rep. Prog. Phys. 83 116401

    [44]

    Andral U, Fodil R S, Amrani F, Billard F, Hertz E, Grelu P 2015 Optica 2 275Google Scholar

    [45]

    Pu G, Yi L, Zhang L, Hu W 2019 Optica 6 362Google Scholar

    [46]

    Baumeister T, Brunton S L, Kutz J N 2018 J. Opt. Soc. Am. B 35 617Google Scholar

    [47]

    Pu G, Yi L, Zhang L, Luo C, Li Z, Hu W 2020 Light Sci. Appl. 9 1Google Scholar

    [48]

    Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H, Wei Z Y 2017 Opt. Express 25 2950Google Scholar

    [49]

    Chernysheva M, Bednyakova A, Al Araimi M, et al. 2017 Sci. Rep. 7 1Google Scholar

    [50]

    Ma C, Huang W, Wang Y, Adams J, Wang Z, Liu J, Zhang H 2020 Nanophotonics 9 2451Google Scholar

    [51]

    Pang L, Wang R, Li L, Wu R, Lv Y 2020 Infrared Phys. Technol. 110 103444Google Scholar

    [52]

    Dou Z Y, Zhang B, Cai J H, Hou J 2020 Chin. Phys. B 29 094201Google Scholar

    [53]

    Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. 2015 Opt. Express 23 18840Google Scholar

    [54]

    Aguergaray C, Broderick N G, Erkintalo M, Chen J S, Kruglov V 2012 Opt. Express 20 10545Google Scholar

    [55]

    Aguergaray C, Hawker R, Runge A F, Erkintalo M, Broderick N G 2013 Appl. Phys. Lett. 103 3550Google Scholar

    [56]

    Yu Y, Teng H, Wang H B, Wang L N, Zhu J F, Fang S B, Chang G Q, Wang J L, Wei Z Y 2018 Opt. Express 26 10428Google Scholar

    [57]

    Deng D, Zhang H, Gong Q, He L, Li D, Gong M 2020 Opt. Laser Technol. 125 106010Google Scholar

    [58]

    Deng D, Zhang H, Zu J, Chen J 2021 Opt. Lett. 46 1612Google Scholar

    [59]

    Nazemosadat E, Mafi A 2013 J. Opt. Soc. Am. B 30 1357Google Scholar

    [60]

    Te˘gin U, Orta c B 2018 Opt. Lett. 43 1611Google Scholar

    [61]

    Zhao F Y, Wang H S, Hu X H, Wang Y S, Zhang W, Zhang T, Sun C D, Yan Z J 2018 Laser Phys. Lett. 15 115106Google Scholar

    [62]

    Chen G W, Wang H G, Zhu J, Li H Y, Zhu L Q 2021 Infrared Phys. Technol. 112 103607Google Scholar

    [63]

    Gan Y P, Wu Q C, Yao Y, Liu C Y, Fu Y P, Yang Y F, Tian J J, Xu K 2021 Opt. Commun. 479 126441Google Scholar

    [64]

    Huang L, Zhang Y S, Cui Y D 2021 Chin. Phys. B 30 114203Google Scholar

  • [1] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [2] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] 田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇. 高激光损伤阈值Ge-As-S硫系玻璃光纤及中红外超连续谱产生. 物理学报, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [4] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [6] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [7] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [8] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [9] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [10] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [11] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [12] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, 2017, 66(11): 114207. doi: 10.7498/aps.66.114207
    [13] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [14] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [15] 曹士英, 朱月, 柴路, 王清月, 张志刚. 半导体可饱和吸收镜锁模的钒酸盐混晶Nd:Gd0.1Y0.9VO4激光器. 物理学报, 2009, 58(9): 6269-6272. doi: 10.7498/aps.58.6269
    [16] 柴 路, 颜 石, 薛迎红, 刘庆文, 葛文琦, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 镱、钠共掺的氟化钙晶体在1050nm的可饱和吸收作用. 物理学报, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [17] 刘劲松, 刘 海, 王 春, 吕健滔, 樊 婷, 王晓东. 二维随机激光器的模式选择及阈值与饱和特性. 物理学报, 2006, 55(8): 4123-4131. doi: 10.7498/aps.55.4123
    [18] 王 专, 王清月, 宋有建, 邢岐荣, 柴 路. 含负克尔效应半导体可饱和吸收镜的五镜腔飞秒钛宝石激光器的理论分析. 物理学报, 2005, 54(11): 5164-5167. doi: 10.7498/aps.54.5164
    [19] 柴 路, 王清月, 张志刚, 赵江山, 王 勇, 张伟力, 邢歧荣. 用腔内半导体可饱和吸收镜钛宝石激光器中自锁模状态的实验研究. 物理学报, 2001, 50(1): 68-72. doi: 10.7498/aps.50.68
    [20] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析. 物理学报, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
计量
  • 文章访问数:  5128
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-01-11
  • 上网日期:  2022-01-18
  • 刊出日期:  2022-01-20

/

返回文章
返回