搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像

吕浩昌 赵云驰 杨光 董博闻 祁杰 张静言 朱照照 孙阳 于广华 姜勇 魏红祥 王晶 陆俊 王志宏 蔡建旺 沈保根 杨峰 张申金 王守国

引用本文:
Citation:

基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像

吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国

High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser

Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo
PDF
HTML
导出引用
  • 基于磁二色效应的光发射电子显微镜磁成像技术是研究薄膜磁畴结构的一种重要研究手段, 具有空间分辨率高、可实时成像以及对表面信息敏感等优点. 以全固态深紫外激光(波长为177.3 nm; 能量为7.0 eV)为激发光源的光发射电子显微技术相比于传统的光发射电子显微镜磁成像技术(以同步辐射光源或汞灯为激发源), 摆脱了大型同步辐射光源的限制; 同时又解决了当前阈激发研究中由于激发光源能量低难以实现光电子直接激发的技术难题, 在实验室条件下实现了高分辨磁成像. 本文首先对最新搭建的深紫外激光-光发射电子显微镜系统做了简单介绍. 然后结合超高真空分子束外延薄膜沉积技术, 成功实现了L10-FePt垂直磁各向异性薄膜的磁畴观测, 其空间分辨率高达43.2 nm, 与利用X射线作为激发源的光发射电子显微镜磁成像技术处于同一量级, 为后续开展高分辨磁成像提供了便利. 最后, 重点介绍了在该磁成像技术方面取得的一些最新研究成果: 通过引入Cr的纳米“台阶”, 成功设计出FePt的(001)与(111)双取向外延薄膜; 并在“台阶”区域使用线偏振态深紫外激光观测到了磁线二色衬度, 其强度为圆二色衬度的4.6倍. 上述研究结果表明: 深紫外激光-光发射电子显微镜磁成像技术在磁性薄膜/多层膜体系磁畴观测方面具备了出色的分辨能力, 通过超高真空系统与分子束外延薄膜制备系统相连接, 可以实现高质量单晶外延薄膜制备、超高真空原位传输和高分辨磁畴成像三位一体的功能, 为未来磁性薄膜材料的研究提供了重要手段.
    Magnetic imaging technology based on photo-emission electron microscopy (PEEM) has become an important and powerful tool for observing the magnetic domain in spintronics. The PEEM can get access to real-time imaging with high spatial resolution and is greatly sensitive to the spectroscopic information directly from the magnetic films and surfaces through photoemission process with variable excitation sources. Moreover, the breakthrough in the deep ultraviolet (DUV) laser technology makes it possible to realize domain imaging without the limitation of synchrotron radiation facilities or the direct excitation of photoelectrons due to the high enough photon energy of the source in the current threshold excitation study. In this review article, the deep ultraviolet photo-emission electron microscopy system is first introduced briefly. Then, a detailed study of the magnetic domain observation for the surface of L10-FePt films by the DUV-PEEM technique is presented, where a spatial resolution as high as 43.2 nm is successfully achieved. The above results clearly indicate that the DUV-PEEM reaches a level equivalent to the level reached by X-ray photoemission imaging technique. Finally, a series of recent progress of perpendicular FePt magnetic thin films obtained by the DUV-PEEM technique is provided in detail. For example, a stepped Cr seeding layer is used to form the large-area epitaxial FePt films with (001) and (111) two orientations, where magnetic linear dichroism (MLD) with large asymmetry is observed in the transition area of two phases. The signal of MLD is 4.6 times larger than that of magnetic circular dichroism. These results demonstrate that the magnetic imaging technology based on DUV-PEEM with excellent resolution ability will potentially become an important method to study magnetic materials in the future.
      通信作者: 王守国, sgwang@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51625101, 51961145305, 51971026, 51431009)和中央高校基本科研业务费(批准号: FRF-TP-16-OO1C2)资助的课题
      Corresponding author: Wang Shou-Guo, sgwang@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51625101, 51961145305, 51971026, 51431009) and the Fundamental Research Fund for the Central Universities, China (Grant No. FRF-TP-16-OO1C2)
    [1]

    Hoffmann A, Bader S D 2015 Phys. Rev. Appl. 4 047001Google Scholar

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von M S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [3]

    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K 1998 Nature 392 796Google Scholar

    [4]

    Ohnuma S, Fujimori H, Masumoto T, Xiong X Y, Ping D H, Hono K 2003 Appl. Phys. Lett. 82 946Google Scholar

    [5]

    Pan L, Bogy D B 2009 Nat. Photonics 3 189Google Scholar

    [6]

    Tregenza T, Butlin R K, Wedell N 2000 Nature 407 150

    [7]

    Allwood D A, Xiong G, Cooke M D, Faulkner C C, Atkinson D, Vernier N, Cowburn R P 2002 Science 296 2003Google Scholar

    [8]

    Tudosa I, Stamm C, Kashuba A B, King F, Siegmann H C, Stöhr J, Ju G, Lu B, Weller D 2004 Nature 428 831Google Scholar

    [9]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [10]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 209 1688

    [11]

    Jue E, Safeer C K, Drouard M, Lopez A, Balint P, Buda-Prejbeanu L, Boulle O, Auffret S, Schuhl A, Manchon A, Miron I M, Gaudin G 2016 Nat. Mater. 15 272Google Scholar

    [12]

    Ma E Y, Cui Y T, Ueda K, Tang S, Chen K, Tamura N, Wu P M, Fujioka J, Tokura Y, Shen Z X 2015 Science 350 538Google Scholar

    [13]

    Yoshimura Y, Kim K J, Taniguchi T, Tono T, Ueda K, Hiramatsu R, Moriyama T, Yamada K, Nakatani Y, Ono T 2015 Nat. Phys. 12 157

    [14]

    Wagner K, Kakay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotechnol. 11 432Google Scholar

    [15]

    Currivan-Incorvia J A, Siddiqui S, Dutta S, Evarts E R, Zhang J, Bono D, Ross C A, Baldo M A 2016 Nat. Commun. 7 10275Google Scholar

    [16]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [17]

    Hsiao C H, Yao Y D, Lo S C, Chang H W, Ouyang C 2015 Appl. Phys. Lett. 107 142407Google Scholar

    [18]

    Pollath S, Wild J, Heinen L, Meier T N G, Kronseder M, Tutsch L, Bauer A, Berger H, Pfleiderer C, Zweck J, Rosch A, Back C H 2017 Phys. Rev. Lett. 118 207205Google Scholar

    [19]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712Google Scholar

    [20]

    Je S G, Kim D H, Yoo S C, Min B C, Lee K J, Choe S B 2013 Phys. Rev. B 88 214401Google Scholar

    [21]

    Welp U, Vlasko-Vlasov V K, Liu X, Furdyna J K, Wojtowicz T 2003 Phys. Rev. Lett. 90 167206Google Scholar

    [22]

    Speckmann M, Oepen H P, Ibach H 1995 Phys. Rev. Lett. 75 2035Google Scholar

    [23]

    Chen G, Ma T, N'Diaye A T, Kwon H, Won C, Wu Y, Schmid A K 2013 Nat. Commun. 4 2671Google Scholar

    [24]

    Zhang S, Kronast F, van der Laan G, Hesjedal T 2018 Nano Lett. 18 1057Google Scholar

    [25]

    Da Col S, Jamet S, Rougemaille N, Locatelli A, Mentes T O, Burgos B S, Afid R, Darques M, Cagnon L, Toussaint J C, Fruchart O 2014 Phys.Rev. B 89 180405Google Scholar

    [26]

    Moubah R, Elzo M, El. Moussaoui S, Colson D, Jaouen N, Belkhou R, Viret M 2012 Appl. Phys. Lett. 100 042406Google Scholar

    [27]

    Nolting F, Scholl A, Stöhr J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Anders S, Lüning J, Fullerton E E, Toney M F, Scheinfein M R, Padmore H A 2000 Nature 405 767Google Scholar

    [28]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [29]

    He Q, Chu Y H, Heron J T, Yang S Y, Liang W I, Kuo C Y, Lin H J, Yu P, Liang C W, Zeches R J, Kuo W C, Juang J Y, Chen C T, Arenholz E, Scholl A, Ramesh R 2011 Nat. Commun. 2 225Google Scholar

    [30]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza C D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [31]

    Cheng X M, Keavney D J 2012 Rep. Prog. Phys. 75 026501Google Scholar

    [32]

    吴义政 2010 物理 39 406

    Wu Y Z 2010 Physics 39 406

    [33]

    Kuch W, Schneider C M 2001 Rep. Prog. Phys. 64 147Google Scholar

    [34]

    Kuch W, Gilles J, Kang S S, Imada S, Suga S, Kirschner J 2000 Phys. Rev. B 62 3824

    [35]

    Kuch W, Dittschar A, Meinel K, Zharnikov M, Schneider C M, Kirschner J 1996 Phys. Rev. B 53 11621Google Scholar

    [36]

    Stöhr J 1999 J. Magn. Magn. Mater. 200 470Google Scholar

    [37]

    Andersson C, Sanyal B, Eriksson O, Nordstrom L, Karis O, Arvanitis D, Konishi T, Holub-Krappe E, Dunn J H 2007 Phys. Rev. Lett. 99 177207Google Scholar

    [38]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, He Q, Zhang J X, Yang S Y, Lee M J, Ramasse Q M, Erni R, Chu Y H, Arena D A, Kao C C, Martin L W, Ramesh R 2010 Phys. Rev. Lett. 105 027201Google Scholar

    [39]

    Baruth A, Keavney D J, Burton J D, Janicka K, Tsymbal E Y, Yuan L, Liou S H, Adenwalla S 2006 Phys. Rev. B 74 054419Google Scholar

    [40]

    Bernien M, Miguel J, Weis C, Ali M E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [41]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [42]

    丁海峰, 董国胜, 金晓峰 1998 物理 27 621

    Ding H F, Dong G S, Jin X F 1998 Physics 27 621

    [43]

    Rampe A, Güntherodt G 1998 Phys. Rev. B 57 14370Google Scholar

    [44]

    Marx G K L, Elmers H J, Schönhense G 2000 Phys. Rev. Lett. 84 5888Google Scholar

    [45]

    Arenholz E, van der Laan G, Chopdekar R V, Suzuki Y 2007 Phys. Rev. Lett. 98 197201Google Scholar

    [46]

    Wu J, Choi J, Scholl A, Doran A, Arenholz E, Wu Y Z, Won C, Hwang C, Qiu Z Q 2009 Phys. Rev. B 80 012409Google Scholar

    [47]

    Scholl A, Stöhr J, Lüning J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Nolting F, Anders S, Fullerton E E, Scheinfein M R, Padmore H A 2000 Science 287 1014Google Scholar

    [48]

    Ohldag H, Scholl A, Nolting F, Anders S, Hillebrecht F U, Stöhr J 2001 Phys. Rev. Lett. 86 2878Google Scholar

    [49]

    Schwickert M M, Guo G Y, Tomaz M A, O’Brien W L, Harp G R 1998 Phys. Rev. B 58 4289Google Scholar

    [50]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [51]

    Sanchez-Barriga J, Varykhalov A, Springholz G, Steiner H, Kirchschlager R, Bauer G, Caha O, Schierle E, Weschke E, Unal A A, Valencia S, Dunst M, Braun J, Ebert H, Minar J, Golias E, Yashina L V, Ney A, Holy V, Rader O 2016 Nat. Commun. 7 10559Google Scholar

    [52]

    Rodríguez A F, Nolting F, Bansmann J, Kleibert A, Heyderman L J 2007 J. Magn. Magn. Mater. 316 426Google Scholar

    [53]

    Scholl A, Ohldag H, Nolting F, Stöhr J, Padmore H A 2002 Rev. Sci. Instrum. 73 1362Google Scholar

    [54]

    Marx G K L, Jubert P O, Bischof A, Allenspach R 2003 Appl. Phys. Lett. 83 2925Google Scholar

    [55]

    Nakagawa T, Yokoyama T 2006 Phys. Rev. Lett. 96 237402Google Scholar

    [56]

    Nakagawa T, Yokoyama T, Hosaka M, Katoh M 2007 Rev. Sci. Instrum. 78 023907Google Scholar

    [57]

    Hild K, Maul J, Meng T, Kallmayer M, Schonhense G, Elmers H J, Ramos R, Arora S K, Shvets I V 2008 J. Phys. Condens. Matter 20 235218Google Scholar

    [58]

    Hild K, Emmel J, Schönhense G, Elmers H J 2009 Phys. Rev. B 80 224426Google Scholar

    [59]

    Nakagawa T, Watanabe K, Matsumoto Y, Yokoyama T 2009 J. Phys. Condens. Matter 21 314010Google Scholar

    [60]

    Kronseder M, Minár J, Braun J, Günther S, Woltersdorf G, Ebert H, Back C H 2011 Phys. Rev. B 83 132404Google Scholar

    [61]

    Taniuchi T, Kotani Y, Shin S 2015 Rev. Sci. Instrum. 86 023701Google Scholar

    [62]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [63]

    Nakagawa T, Yokoyama T 2012 J. Electron. Spectrosc. 185 356Google Scholar

    [64]

    Nakagawa T, Yamamoto I, Takagi Y, Yokoyama T 2010 J. Electron. Spectrosc. 181 164Google Scholar

    [65]

    许祖彦 2009 中国激光 36 1619Google Scholar

    Xu Z Y 2009 Chin. J. Las. 36 1619Google Scholar

    [66]

    Chen C T, Lu J H, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z Y, Wang J 2002 Opt. Lett. 27 637Google Scholar

    [67]

    宁艳晓, 傅强, 包信和 2016 物理化学学报 32 171Google Scholar

    Ning Y X, Fu Q, Bao X H 2016 Acta. Phys. Chim. Sin. 32 171Google Scholar

    [68]

    曹凝, 傅强, 包信和 2012 中国科学院院刊 27 103Google Scholar

    Cao N, Fu Q, Bao X H 2012 Bull. Chin. Acad. Sci. 27 103Google Scholar

    [69]

    Zhao Y C, Lyu H C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Zhan W S, Yang F, Zhang S J, Wang S G 2019 Ultramicroscopy 202 156Google Scholar

    [70]

    Cui Y, Fu Q, Bao X 2010 Phys. Chem. Chem. Phys. 12 5053Google Scholar

    [71]

    赵云驰 2019 博士学位论文 (北京: 中国科学院物理研究所)

    Zhao Y C 2019 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Science) (in Chinese)

    [72]

    Yang G, Li D L, Wang S G, Ma Q L, Liang S H, Wei H X, Han X F, Hesjedal T, Ward R C C, Kohn A, Elkayam A, Tal N, Zhang X G 2015 J. Appl. Phys. 117 083904Google Scholar

    [73]

    Hopster H, Oepen H P 2005 Magnetic Microscopy of Nanostructures (Berlin: Springer) p138

    [74]

    Stöhr J, Scholl A, Regan T J, Anders S, Lüning J, Scheinfein M R, Padmore H A, White R L 1999 Phys. Rev. Lett. 83 1862Google Scholar

    [75]

    Taniuchi T, Yasuhara R, Kumigashira H, Kubota M, Okazaki H, Wakita T, Yokoya T, Ono K, Oshima M, Lippmaa M, Kawasaki M, Koinuma H 2007 Surf. Sci. 601 4690Google Scholar

    [76]

    Schmidt T, Sala A, Marchetto H, Umbach E, Freund H J 2013 Ultramicroscopy 126 23Google Scholar

    [77]

    Sandig O, Herrero-Albillos J, Römer F M, Friedenberger N, Kurde J, Noll T, Farle M, Kronast F 2012 J. Electron. Spectrosc. 185 365Google Scholar

    [78]

    Lairson B M, Visokay M R, Sinclair R, Hagstrom S, Clemens B M 1992 Appl. Phys. Lett. 61 1390Google Scholar

    [79]

    Cillessen J F M, Wolf R M, d Leeuw D M 1993 Thin Solid Films 226 53Google Scholar

    [80]

    Nieuwenhuys B E, Sachtler W M H 1973 Surf. Sci. 34 317Google Scholar

    [81]

    Holcomb M B, Martin L W, Scholl A, He Q, Yu P, Yang C H, Yang S Y, Glans P A, Valvidares M, Huijben M, Kortright J B, Guo J, Chu Y H, Ramesh R 2010 Phys. Rev. B 81 134406Google Scholar

    [82]

    Sander A, Christl M, Chiang C-T, Alexe M, Widdra W 2015 J. Appl. Phys. 118 224102Google Scholar

  • 图 1  (a)通过λ/4波片输出圆偏振态DUV激光; (b)通过λ/2波片调制DUV激光线偏振态[69]

    Fig. 1.  Schematic drawings of the DUV laser optical system with (a) circular and (b) linear polarizations[69].

    图 2  深紫外激光与PEEM的连接示意图

    Fig. 2.  Optical system of the DUV-PEEM system.

    图 3  深紫外激光-光发射电子显微镜系统装置示意图[69]

    Fig. 3.  A schematic layout of the DUV laser-based LEEM/PEEM system[69].

    图 4  MBE-PEEM系统连接示意图和实物照片

    Fig. 4.  Schematic setup and photo of MBE-PEEM combined system.

    图 5  (a) Hg灯激发下碳原子吸附于Ru (0001) 表面的PEEM图像; (b)在PEEM图像所示位置进行线扫描的归一化强度曲线与计算得到的空间分辨率[71]

    Fig. 5.  (a) PEEM image of multilayer graphene on Ru (0001) taken with Hg arc lamp; (b) spatial resolution calculated from obtained PEEM image[71].

    图 6  LEEM模式的电子光路系统(电子枪部分)

    Fig. 6.  Optical system of LEEM (E-Gun).

    图 7  (a) Si (001) 的LEEM暗场像; (b) Si (001) 表面的(2 × 1)重构LEED图像; (c)在LEEM图像所示位置进行线扫描的归一化强度曲线与计算得到的空间分辨率[71]

    Fig. 7.  (a) Dark field image and (b) LEED pattern of a (2 × 1) reconstructed Si (001) surface; (c) spatial resolution calculated from obtained LEEM image[71].

    图 8  (a)单晶Ru (0001) 表面生长的岛状PbO的DUV-PEEM图像; (b)在PEEM图像所示位置进行线扫描的归一化强度曲线与计算得到的空间分辨率[71]

    Fig. 8.  (a) DUV-PEEM image of PbO islands on Ru(0001); (b) spatial resolution calculated from obtained PEEM image[71].

    图 9  (a) PEEM系统能量狭缝的结构示意图; (b)色散模式下采集得到的单晶Ru (0001)上生长岛状PbO样品的深紫外激光-光发射谱图; (c)线扫描得到的费米边附近激光光发射谱的归一化强度曲线

    Fig. 9.  (a) Schematic drawing of energy filter in PEEM system; (b) DUV-photo emission spectrum obtained from island-shaped PbO grown on Ru (0001) in dispersion mode; (c) normalized line profile with the calculated spatial resolution from selected area marked in panel (b).

    图 10  (a) MgO/Cr (5 nm)/Pt (10 nm)/FePt (20nm)结构样品垂直于膜面的磁滞回线; (b) FePt薄膜的LEEM图像(Ep = 8.6 eV), 插图所示为该区域的LEED图像(Ep = 16.3 eV); (c)图(b)红色方框标识区域使用圆偏振DUV获得的PEEM磁畴图像; (d)使用磁力显微镜采集同一样品的磁畴照片; (e)插图所示视野内对DUV-PEEM磁畴成像空间分辨率的测定[69]

    Fig. 10.  (a) Schematic structure and out-of-plane hysteresis loop of MgO (001) sub. /Cr (5 nm)/Pt (10 nm)/FePt (20 nm) films; (b) LEEM image (Ep = 8.6 eV) and LEED (Ep = 16.3 eV) pattern (inset) of FePt film; (c) magnetic domain (contrast enhanced) of the area marked by a red dashed rectangle in (b) taken with circularly polarized DUV laser; (d) magnetic domain image of the FePt films with the same structure obtained by magnetic force microscopy; (e) normalized line profile with the estimated spatial resolution from selected area marked in inset[69].

    图 11  (a) Cr纳米台阶上外延生长的Pt种子层结构示意图; (b) Pt种子层的UV-PEEM图像; (c)暗区A对应的LEEM与LEED图像; (d)亮区B对应的LEEM与LEED图像; (e)过渡区域的LEEM图像(区域A, B与C的位置在(b)图中标出); (f) Pt种子层选区((b)图中红色线框) DUV-PEEM图像; (g)与(f)图同区域的线二色DUV-PEEM图像[69]

    Fig. 11.  (a) Schematic drawing of a Pt seed layer with Cr step. (b) UV PEEM image of Pt seed layer consisting of two orientations. LEEM and LEED patterns of the selected areas marked by blue rectangles in panel (b): (c) dark area A, (d) light area B and (e) boundary area C. (f) DUV-PEEM image of the selected area marked by a red dashed rectangle in panel (b). (g) Linear dichroism image of the same area as panel (f)[69].

    图 12  (a)在具有双晶体取向的Pt种子层上生长FePt后的UV-PEEM图像; (b)区域I ((a)图标注位置)的LEED图像; (c)区域II的LEED图像; (d)使用线偏振态深紫外激光在选定区域((a)图红色线框标记位置)采集的DUV-PEEM图像[69]

    Fig. 12.  (a) UV-PEEM image of FePt film deposited on Pt seed layer with two orientations. LEED patterns of selected areas marked by blue rectangles in panel (a): (b) light area I and (c) dark area II. (d) DUV-PEEM image of the selected area marked by a red dashed rectangle in panel (a) taken with linearly polarized laser[69].

    图 13  在同一视野下分别使用(a)左旋与(b)右旋的圆偏振态深紫外激光采集的DUV-PEEM图像; (c)计算得到的MCD磁畴图像; 在同一视野下分别使用偏振方向为(d)竖直与(e)水平的线偏振态激光采集的DUV-PEEM图像; (f)计算所得MLD磁畴图像; (g)磁线二色衬度随激光偏振方向的变化规律[69]

    Fig. 13.  DUV-PEEM images taken with (a) left-circularly polarized and (b) right-circularly polarized light; (c) MCD image of FePt film; (d), (e) DUV-PEEM images taken with linearly-polarized laser (polarization shown by red arrow); (f) MLD image of FePt film; (g) polarization dependent MLD asymmetry for the selected area[69].

    表 1  三种光源的特性比较[65]

    Table 1.  Properties comparing of the three source[65].

    Source
    DUV-DPLSynchrotron radiationGas discharge laser
    Energy resolution/meV~0.261—5~1.2
    Photon circulation1014—10151010—1012~1012
    Photon flux density/photon·s–1·cm–21019—10201012—1014< 1014
    Wavelength range/nm170—2101—21058.5
    Mode of operationns, ps, fs pulseps pulsecontinuous wave
    Detection depth/nm~10 (bulk effect)0.5—2 (skin effect)~0.5 (skin effect)
    下载: 导出CSV
  • [1]

    Hoffmann A, Bader S D 2015 Phys. Rev. Appl. 4 047001Google Scholar

    [2]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von M S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [3]

    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K 1998 Nature 392 796Google Scholar

    [4]

    Ohnuma S, Fujimori H, Masumoto T, Xiong X Y, Ping D H, Hono K 2003 Appl. Phys. Lett. 82 946Google Scholar

    [5]

    Pan L, Bogy D B 2009 Nat. Photonics 3 189Google Scholar

    [6]

    Tregenza T, Butlin R K, Wedell N 2000 Nature 407 150

    [7]

    Allwood D A, Xiong G, Cooke M D, Faulkner C C, Atkinson D, Vernier N, Cowburn R P 2002 Science 296 2003Google Scholar

    [8]

    Tudosa I, Stamm C, Kashuba A B, King F, Siegmann H C, Stöhr J, Ju G, Lu B, Weller D 2004 Nature 428 831Google Scholar

    [9]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [10]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 209 1688

    [11]

    Jue E, Safeer C K, Drouard M, Lopez A, Balint P, Buda-Prejbeanu L, Boulle O, Auffret S, Schuhl A, Manchon A, Miron I M, Gaudin G 2016 Nat. Mater. 15 272Google Scholar

    [12]

    Ma E Y, Cui Y T, Ueda K, Tang S, Chen K, Tamura N, Wu P M, Fujioka J, Tokura Y, Shen Z X 2015 Science 350 538Google Scholar

    [13]

    Yoshimura Y, Kim K J, Taniguchi T, Tono T, Ueda K, Hiramatsu R, Moriyama T, Yamada K, Nakatani Y, Ono T 2015 Nat. Phys. 12 157

    [14]

    Wagner K, Kakay A, Schultheiss K, Henschke A, Sebastian T, Schultheiss H 2016 Nat. Nanotechnol. 11 432Google Scholar

    [15]

    Currivan-Incorvia J A, Siddiqui S, Dutta S, Evarts E R, Zhang J, Bono D, Ross C A, Baldo M A 2016 Nat. Commun. 7 10275Google Scholar

    [16]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [17]

    Hsiao C H, Yao Y D, Lo S C, Chang H W, Ouyang C 2015 Appl. Phys. Lett. 107 142407Google Scholar

    [18]

    Pollath S, Wild J, Heinen L, Meier T N G, Kronseder M, Tutsch L, Bauer A, Berger H, Pfleiderer C, Zweck J, Rosch A, Back C H 2017 Phys. Rev. Lett. 118 207205Google Scholar

    [19]

    Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K 2017 Nat. Mater. 16 712Google Scholar

    [20]

    Je S G, Kim D H, Yoo S C, Min B C, Lee K J, Choe S B 2013 Phys. Rev. B 88 214401Google Scholar

    [21]

    Welp U, Vlasko-Vlasov V K, Liu X, Furdyna J K, Wojtowicz T 2003 Phys. Rev. Lett. 90 167206Google Scholar

    [22]

    Speckmann M, Oepen H P, Ibach H 1995 Phys. Rev. Lett. 75 2035Google Scholar

    [23]

    Chen G, Ma T, N'Diaye A T, Kwon H, Won C, Wu Y, Schmid A K 2013 Nat. Commun. 4 2671Google Scholar

    [24]

    Zhang S, Kronast F, van der Laan G, Hesjedal T 2018 Nano Lett. 18 1057Google Scholar

    [25]

    Da Col S, Jamet S, Rougemaille N, Locatelli A, Mentes T O, Burgos B S, Afid R, Darques M, Cagnon L, Toussaint J C, Fruchart O 2014 Phys.Rev. B 89 180405Google Scholar

    [26]

    Moubah R, Elzo M, El. Moussaoui S, Colson D, Jaouen N, Belkhou R, Viret M 2012 Appl. Phys. Lett. 100 042406Google Scholar

    [27]

    Nolting F, Scholl A, Stöhr J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Anders S, Lüning J, Fullerton E E, Toney M F, Scheinfein M R, Padmore H A 2000 Nature 405 767Google Scholar

    [28]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [29]

    He Q, Chu Y H, Heron J T, Yang S Y, Liang W I, Kuo C Y, Lin H J, Yu P, Liang C W, Zeches R J, Kuo W C, Juang J Y, Chen C T, Arenholz E, Scholl A, Ramesh R 2011 Nat. Commun. 2 225Google Scholar

    [30]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza C D, Locatelli A, Mentes T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigne Y, Stashkevich A, Cherif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [31]

    Cheng X M, Keavney D J 2012 Rep. Prog. Phys. 75 026501Google Scholar

    [32]

    吴义政 2010 物理 39 406

    Wu Y Z 2010 Physics 39 406

    [33]

    Kuch W, Schneider C M 2001 Rep. Prog. Phys. 64 147Google Scholar

    [34]

    Kuch W, Gilles J, Kang S S, Imada S, Suga S, Kirschner J 2000 Phys. Rev. B 62 3824

    [35]

    Kuch W, Dittschar A, Meinel K, Zharnikov M, Schneider C M, Kirschner J 1996 Phys. Rev. B 53 11621Google Scholar

    [36]

    Stöhr J 1999 J. Magn. Magn. Mater. 200 470Google Scholar

    [37]

    Andersson C, Sanyal B, Eriksson O, Nordstrom L, Karis O, Arvanitis D, Konishi T, Holub-Krappe E, Dunn J H 2007 Phys. Rev. Lett. 99 177207Google Scholar

    [38]

    Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, He Q, Zhang J X, Yang S Y, Lee M J, Ramasse Q M, Erni R, Chu Y H, Arena D A, Kao C C, Martin L W, Ramesh R 2010 Phys. Rev. Lett. 105 027201Google Scholar

    [39]

    Baruth A, Keavney D J, Burton J D, Janicka K, Tsymbal E Y, Yuan L, Liou S H, Adenwalla S 2006 Phys. Rev. B 74 054419Google Scholar

    [40]

    Bernien M, Miguel J, Weis C, Ali M E, Kurde J, Krumme B, Panchmatia P M, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer P M, Eriksson O, Kuch W, Wende H 2009 Phys. Rev. Lett. 102 047202Google Scholar

    [41]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [42]

    丁海峰, 董国胜, 金晓峰 1998 物理 27 621

    Ding H F, Dong G S, Jin X F 1998 Physics 27 621

    [43]

    Rampe A, Güntherodt G 1998 Phys. Rev. B 57 14370Google Scholar

    [44]

    Marx G K L, Elmers H J, Schönhense G 2000 Phys. Rev. Lett. 84 5888Google Scholar

    [45]

    Arenholz E, van der Laan G, Chopdekar R V, Suzuki Y 2007 Phys. Rev. Lett. 98 197201Google Scholar

    [46]

    Wu J, Choi J, Scholl A, Doran A, Arenholz E, Wu Y Z, Won C, Hwang C, Qiu Z Q 2009 Phys. Rev. B 80 012409Google Scholar

    [47]

    Scholl A, Stöhr J, Lüning J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Nolting F, Anders S, Fullerton E E, Scheinfein M R, Padmore H A 2000 Science 287 1014Google Scholar

    [48]

    Ohldag H, Scholl A, Nolting F, Anders S, Hillebrecht F U, Stöhr J 2001 Phys. Rev. Lett. 86 2878Google Scholar

    [49]

    Schwickert M M, Guo G Y, Tomaz M A, O’Brien W L, Harp G R 1998 Phys. Rev. B 58 4289Google Scholar

    [50]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [51]

    Sanchez-Barriga J, Varykhalov A, Springholz G, Steiner H, Kirchschlager R, Bauer G, Caha O, Schierle E, Weschke E, Unal A A, Valencia S, Dunst M, Braun J, Ebert H, Minar J, Golias E, Yashina L V, Ney A, Holy V, Rader O 2016 Nat. Commun. 7 10559Google Scholar

    [52]

    Rodríguez A F, Nolting F, Bansmann J, Kleibert A, Heyderman L J 2007 J. Magn. Magn. Mater. 316 426Google Scholar

    [53]

    Scholl A, Ohldag H, Nolting F, Stöhr J, Padmore H A 2002 Rev. Sci. Instrum. 73 1362Google Scholar

    [54]

    Marx G K L, Jubert P O, Bischof A, Allenspach R 2003 Appl. Phys. Lett. 83 2925Google Scholar

    [55]

    Nakagawa T, Yokoyama T 2006 Phys. Rev. Lett. 96 237402Google Scholar

    [56]

    Nakagawa T, Yokoyama T, Hosaka M, Katoh M 2007 Rev. Sci. Instrum. 78 023907Google Scholar

    [57]

    Hild K, Maul J, Meng T, Kallmayer M, Schonhense G, Elmers H J, Ramos R, Arora S K, Shvets I V 2008 J. Phys. Condens. Matter 20 235218Google Scholar

    [58]

    Hild K, Emmel J, Schönhense G, Elmers H J 2009 Phys. Rev. B 80 224426Google Scholar

    [59]

    Nakagawa T, Watanabe K, Matsumoto Y, Yokoyama T 2009 J. Phys. Condens. Matter 21 314010Google Scholar

    [60]

    Kronseder M, Minár J, Braun J, Günther S, Woltersdorf G, Ebert H, Back C H 2011 Phys. Rev. B 83 132404Google Scholar

    [61]

    Taniuchi T, Kotani Y, Shin S 2015 Rev. Sci. Instrum. 86 023701Google Scholar

    [62]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [63]

    Nakagawa T, Yokoyama T 2012 J. Electron. Spectrosc. 185 356Google Scholar

    [64]

    Nakagawa T, Yamamoto I, Takagi Y, Yokoyama T 2010 J. Electron. Spectrosc. 181 164Google Scholar

    [65]

    许祖彦 2009 中国激光 36 1619Google Scholar

    Xu Z Y 2009 Chin. J. Las. 36 1619Google Scholar

    [66]

    Chen C T, Lu J H, Togashi T, Suganuma T, Sekikawa T, Watanabe S, Xu Z Y, Wang J 2002 Opt. Lett. 27 637Google Scholar

    [67]

    宁艳晓, 傅强, 包信和 2016 物理化学学报 32 171Google Scholar

    Ning Y X, Fu Q, Bao X H 2016 Acta. Phys. Chim. Sin. 32 171Google Scholar

    [68]

    曹凝, 傅强, 包信和 2012 中国科学院院刊 27 103Google Scholar

    Cao N, Fu Q, Bao X H 2012 Bull. Chin. Acad. Sci. 27 103Google Scholar

    [69]

    Zhao Y C, Lyu H C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Zhan W S, Yang F, Zhang S J, Wang S G 2019 Ultramicroscopy 202 156Google Scholar

    [70]

    Cui Y, Fu Q, Bao X 2010 Phys. Chem. Chem. Phys. 12 5053Google Scholar

    [71]

    赵云驰 2019 博士学位论文 (北京: 中国科学院物理研究所)

    Zhao Y C 2019 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Science) (in Chinese)

    [72]

    Yang G, Li D L, Wang S G, Ma Q L, Liang S H, Wei H X, Han X F, Hesjedal T, Ward R C C, Kohn A, Elkayam A, Tal N, Zhang X G 2015 J. Appl. Phys. 117 083904Google Scholar

    [73]

    Hopster H, Oepen H P 2005 Magnetic Microscopy of Nanostructures (Berlin: Springer) p138

    [74]

    Stöhr J, Scholl A, Regan T J, Anders S, Lüning J, Scheinfein M R, Padmore H A, White R L 1999 Phys. Rev. Lett. 83 1862Google Scholar

    [75]

    Taniuchi T, Yasuhara R, Kumigashira H, Kubota M, Okazaki H, Wakita T, Yokoya T, Ono K, Oshima M, Lippmaa M, Kawasaki M, Koinuma H 2007 Surf. Sci. 601 4690Google Scholar

    [76]

    Schmidt T, Sala A, Marchetto H, Umbach E, Freund H J 2013 Ultramicroscopy 126 23Google Scholar

    [77]

    Sandig O, Herrero-Albillos J, Römer F M, Friedenberger N, Kurde J, Noll T, Farle M, Kronast F 2012 J. Electron. Spectrosc. 185 365Google Scholar

    [78]

    Lairson B M, Visokay M R, Sinclair R, Hagstrom S, Clemens B M 1992 Appl. Phys. Lett. 61 1390Google Scholar

    [79]

    Cillessen J F M, Wolf R M, d Leeuw D M 1993 Thin Solid Films 226 53Google Scholar

    [80]

    Nieuwenhuys B E, Sachtler W M H 1973 Surf. Sci. 34 317Google Scholar

    [81]

    Holcomb M B, Martin L W, Scholl A, He Q, Yu P, Yang C H, Yang S Y, Glans P A, Valvidares M, Huijben M, Kortright J B, Guo J, Chu Y H, Ramesh R 2010 Phys. Rev. B 81 134406Google Scholar

    [82]

    Sander A, Christl M, Chiang C-T, Alexe M, Widdra W 2015 J. Appl. Phys. 118 224102Google Scholar

  • [1] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [2] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控. 物理学报, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [3] 任峰, 阴生毅, 卢志鹏, 李阳, 王宇, 张申金, 杨峰, 卫东. 深紫外激光光发射与热发射电子显微镜在热扩散阴极研究中的应用. 物理学报, 2017, 66(18): 187901. doi: 10.7498/aps.66.187901
    [4] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器. 物理学报, 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [5] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [6] 王震遐, 阮美玲, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究. 物理学报, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [7] 王震遐, 胡 均, 王玟珉, 俞国庆, 阮美龄. 石墨薄片弯曲度的高分辨率电子显微镜研究. 物理学报, 1998, 47(11): 1853-1857. doi: 10.7498/aps.47.1853
    [8] 蔡群, M.S.ALTMAN. W(110)面二维氧化的低能电子显微镜研究. 物理学报, 1997, 46(6): 1048-1054. doi: 10.7498/aps.46.1048
    [9] 杨翠英, 张道范, 吴星, 周玉清, 冯国光. 光折变BaTiO3晶体缺陷的分析电子显微镜研究. 物理学报, 1989, 38(12): 2003-2007. doi: 10.7498/aps.38.2003
    [10] 沈晓庆. 用Linfoot象质评价理论研究高分辨电子显微镜依赖失焦的象质. 物理学报, 1989, 38(3): 516-522. doi: 10.7498/aps.38.516
    [11] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究. 物理学报, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [12] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究. 物理学报, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [13] 温树林, 冯景伟. 高分辨电子显微镜研究α-Si3N4晶格缺陷. 物理学报, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [14] 杨奇斌. 标定超高压电子显微镜中菊池线的一种有效方法. 物理学报, 1982, 31(7): 981-987. doi: 10.7498/aps.31.981
    [15] 李方华, 樊汉节, 杨大宇, 傅平秋, 孔祐华. 黄河矿的电子显微镜研究. 物理学报, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [16] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法. 物理学报, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [17] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察. 物理学报, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [18] 李方华, 范海福. 用Sayre等式复原高分辨电子显微象. 物理学报, 1979, 28(2): 276-278. doi: 10.7498/aps.28.276
    [19] 李方华. 用高分辨电子显微镜测定晶体结构. 物理学报, 1977, 26(3): 193-198. doi: 10.7498/aps.26.193
    [20] 钱临照, 何寿安. 铝单晶体滑移的电子显微镜颧察(二). 物理学报, 1955, 11(3): 290-292. doi: 10.7498/aps.11.290
计量
  • 文章访问数:  11539
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-02-14
  • 刊出日期:  2020-05-05

/

返回文章
返回